

Abstract— Continuous monitoring of vital signs has the
potential of improving infant health care and reduce SIDS
(sudden infant death syndrome). With the emergence of micro-
sensors and wireless technology can enable change in the
conventional health care systems, replacing it with wearable
and non-contact based wireless health care system. In this
paper, an infra-red non-contact temperature sensor, and a
microphone based breathing sensor are used to detect vitals sign
of an infant. Interfacing different sensors and acquiring and
processing data in real time is a challenging task and requires a
dedicated hardware. Field programmable gate array (FPGA)
based technology has become the most widely used technique
for real-time application. The HDL (hardware description
language) based FPGA implementation of necessary drivers and
interfacing hardware are proposed in this paper. With the help
of necessary simulations and experimental results, the
functionality and accuracy of the proposed system are justified.

Key words-Vital sign, FPGA, HDL, non-contact sensors,
SIDS, Infra-red temperature sensor, respiratory sensor.

I. INTRODUCTION
ITAL signs, such as temperature and respiratory rate,
have long been used by the physicians to detect any

immediate health concerns. Vital signs are important marker
of human health condition. For example, the body’
temperature represents the balance between the heat
produced and heat lost, also known as thermal regulation. In
the clinical environment, body temperature may be affected
by factors such as underlying pathophysiology (e.g. sepsis),
skin exposure (e.g. in the operating theatre) or age [1].
Respiratory rate measurement serves a number of purposes,
such as being an early marker of acidosis. It is also one of
the most sensitive indicators of critical illness [2]. An
increase from the patient’s normal respiration rate is an early
and important sign of respiratory distress and potential
hypoxaemia [3].

Infant needs constant care. Continuous monitoring of
temperature and respiratory rate can provide an extra level of
protection in infant health care. Several companies are
working on vital sign monitoring systems. Some of the
popular products are Mimo Baby [4], and Healthdyne
System [5]. Most of these products are developed based on
wearable technology in which sensors require physical
contact. The main disadvantage of the contact based system
is not only it is inconvenient for the infants but it also poses
threat to infant health. The heat and the radiation generated

The Authors are with the Electrical Engineering and Computer Science
Department, Catholic University of America, Washington, DC 20064,
USA, (e-mail: bhowmik@cua.edu).

by the electronic circuits could have an adverse effect on
infant health. A body of researchers has been working on
non-contact based microwave breathing sensors [6-9].
However these breathing sensors are still in the preliminary
stages of research. There is not enough data available to
justify the validity of using microwave sensors on infants. To
overcome the limitation of existing approaches, we proposed
a non-contact based vital sign detection system which uses
an infra-red temperature sensor and microphone to detect
temperature and respiratory rate, respectively. Interfacing
different sensors and acquiring and processing data in real
time is a challenging task. The current trend in hardware
design is towards implementing a complete system in a
single chip. Field Programmable Gate Array (FPGA)
technology has become the most successful technology for
developing system which requires a real time application.
Our proposed system is designed using hardware description
language. The system is implemented and verified on an
Altera DE2-115 FPGA board. During the development
phases of our system, a simulation software, ModelSim 10.3
PE, is used for testing and verifying the functionality of
different modules of our design.

The organization of the rest of the paper is as follows.

Section II, firstly describes the operation and communication
protocol of the temperature sensor and then with the help of
flow chart, simulations and experimental outputs it discusses
in detail the temperature controller. In section III, the design
and implementation of an FPGA controller of a microphone
based breathing sensor is discussed. In section IV, a brief
discussion on challenges and future works is given. Finally,
the paper concludes with a short conclusion.

II. INTERFACING NON-CONTACT TEMPERATURE SENSORS

A. Infra-red temperature sensor
A medical grade infra-red temperature sensor, MLX90615

(Melexis Microelectronics Integrated Systems), is used in
our research for non-contact temperature measurement. The
MLX90615 is a 4-pin device (as shown in Fig 1), in which
both IR sensitive thermopile detector chip and the signal
conditioning chip (which has low noise amplifier, 16 bit
ADC, a powerful DSP unit) are integrated in the same
package [10]. This smart sensor is chosen so that the
temperature measurement can be carried out with a minimal
impact on the test subject, which in our case is infant in a
crib. The non-contact methods measure the heat radiated
from the object by measuring the frequency of the heat.

A VHDL Based Controller Design for Non-contact Temperature and
Breathing Sensors Suitable for Crib

Dat Tran, Kiet Duong, and Ujjal K. Bhowmik

V

2014 IEEE 14th International Conference on Bioinformatics and Bioengineering

978-1-4799-7502-0/14 $31.00 © 2014 IEEE

DOI 10.1109/BIBE.2014.11

126

Figure 1. MLX90615 and its Pin functions

MLX90615 has two modes of communication, one is

PWM and another is SMBus (default mode). In our research,
we use an FPGA controller as a master device (CON1, as
shown in Fig 2.) which communicates with MLX90615 via
SMBus protocol. The SMBus interface is a 2-wire protocol,
allowing communication between the Master Device (MD)
and one or more Slave Devices (SD). In the system only one
master can be present at any given time. The MLX90615 can
only be used as a slave device. The MLX90615 supports
only Read Word and Write Word commands of SMBus
interface. The bus protocol for SMBus temperature read is
shown in Fig 3. First 16 bits, which are sent by master, are
for setting up the SD in read mode. Next, the master send 7
bit slave address with RD=1 to receive 16 bits temperature
reading and 8 bits PEC from slave. After every 8 bits
received by the SD an ACK/NACK is followed. Only the SD
with recognized SA gives ACK, the rest will remain silent. If
the SD does not send ACK the MD should stop the
communication and repeat the message. A NACK could be
sent to SD after the PEC. This means that there is an error in
the received message and the SD should try sending the
message again. The PEC calculation includes all bits except
the START, REPEATED START, STOP, ACK, and NACK
bits. The PEC is a CRC-8 with polynomial X8+X2+X1+1.
The Most Significant Bit of every byte is transmitted first
[10]. An example read word format is also shown in Fig 4.

B. MLX90615 Controller
The block diagram of MLX90615 controller for

temperature reading is shown in Fig 5. MLX90615 interface
module generates clock signal, SCL of 17.5 KHz, for
MLX90615. This module also generates and control the
direction of SDA according to read word format timing
diagram [11]. The main function of this module is to send
the read command continuously to acquire new temperature
reading from MLX90615. At each time when it finishes
receiving MSB of objects temperature, it asserts “ld” signal
high for one clock cycle and continues to receive CRC
packet (8-bit PEC) and sends it to CRC controller. This
module also outputs the 16-bit sensor data to the CRC
controller.

CRC controller is a finite state machine, which has three
state (IDLE, SHIFT and COMPARE) and two external
inputs (ld and done). Assume that CRC controller is initially
in IDLE state (as shown in Fig 6). It moves to the SHIFT
state when “ld” changes to “1”. Before changing to SHIFT

Figure 2. Typical MLX90615 connection to SMBus

Figure 3. Read word format

Figure 4. Typical Read word example

Figure 5. MLX90615 Controller

state, a value by concatenating “B627B7” (hex value, first 3
bytes of read word format) and sensor data is stored in to a

Pin Name Function
SDA/PWM Digital I/O. In SBM mode serial Data I/O
VDD External supply voltage
SCL Serial clock input.

(for 2-wire communication protocol)
VSS Ground. The metal is also connected to

this pin.

127

register. When it is in SHIFT state, the “shift” signal is
asserted high and the register is shifted left in each cycle. If
“done” signal is “1”, the state machine will move to the
COMPARE state. If CRC_data, which is received from
MLX90615, is equal to CRC_GEN which is generated by
CRC Generator, then the received sensor data is considered
as the correct temperature reading and the CRC controller
assigns sensor data as temperature data and it moves back to
idle state after one clock pulse.

Figure 6. CRC Controller ASM chart

The most significant bit of the 40-bit register in

CRC_CONTROLLER is connected to input of CRC_GEN
module. CRC_GEN module contains an 8-bit CRC shift
register (as shown in Fig 7) [12]. The input bit is shifted into
the very left XOR gate. The MSB (leftmost bit) of each byte
is shifted in first. CRC_GEN module just only shift the input
bit if the “shift” signal is high. When it finishes shifting all
40 bits of CRC_CONTROLLER register, it feedbacks
“done” signal with CRC_GEN data.

Figure 7. CRC Shift register

C. Simulation and Experimental Results
The simulation of our VHDL code is shown in Figure 8.

ModelSim PE 10.3a is used for our simulation. From the
Simulation results it is clearly observed that our MLX90615
Controller produces desired results. This VHDL is controller
is implemented on an Altera DE2-115 FPGA board. After

receiving the temperature reading the data is processed and
displayed on a VGA monitor (Fig. 9). Experimental results
verify that our controller produces desired results. However,
according to the data sheet of MLX90615 the temperature
measurement is dependent on the field of view (FOV) and
the distance of the object from the sensor. Thus necessary
calibration needs to be done for getting accurate temperature
reading. In our future endeavor, our system will be attached
on a crib and necessary calibration will be made to get
accurate results.

Figure 8. MLX90615 Controller simulation

Figure 9. Experimental result of temperature sensor

III. BREATHING DETECTION SYSTEM
With the desire to build a reliable, low cost, and real time

breathing detection system, we have implemented a
microphone based breathing detector using hardware
description system. The block diagram of our proposed
system is shown in Figure 10. The core component of our
system is Wolfson WM8731 audio CODEC. This chip
supports microphone-in, line-in, and line-out ports, with a
sample rate adjustable from 8 kHz to 96 kHz. The WM8731
is controlled via serial I2C BUS INTERFACE. Other necessary
modules are DATA FETCHER, FILTER, and PEAK
DETECTOR. Brief description of each of the module is
given below.

128

Figure 10. Breath detection system

A. I2C Interface and I2C Controller
The I2C protocol is a widely used low-speed serial bus for

efficient communication between devices [13]. It’s standard
mode supports a data rate up to 100 K bits per second. The
basic timing diagram of a typical data transfer with read
write sequence is shown in Fig 11. The I2C bus consists of
two bidirectional lines, sda (for "serial data") and scl (for
"serial clock"), for data and clock, respectively. The two
lines are connected to the sdin and sclk pins of WM8731.

Figure 11. Read Write sequence and Timing diagram

 For our purpose, we need to just perform write operation
to configure the 11 internal registers of WM8731. Custom
I2C controller has been designed to serve our purpose. The
flow chart of the I2C controller operation is shown in Fig 12.
Assume that I2C_CONTROLLER is initially in IDLE state.
It moves to START state if “wr” signal is high. At START
state the I2C controller generates the start condition signals.
At DATA state, it sends a byte serially to I2C_SDA pin.
Since we need to transmit 24 bits for configuring the internal
register of WM8731, we divided the packet into 3 bytes. By
tracking number of bit has been sent, we can know when it
finishes sending a byte or not. After sending a bytes, it
moves to ACK state and checks if it finishes transmitting 3
bytes or not. If not, it moves back to DATA state and
transmits remaining bytes. When ACK is 1, it assert fail flag
high and moves to stop state. At STOP state, it just simply

transmits stop condition and after that asserts “done” signal
high and moves to RESUME state because we must need
some additional time before start sending another packet
again. Our I2C Controller is designed using VHDL. We have
used ModelSim 10.3 to verify the functionality of our I2C
controller. The simulation results as shown in Figure 13
justify that the I2C Controller produces expected results.

Figure 12. I2C Controller ASM

Figure 13. I2C Controller simulation

B. I2C_CONFIG Module
I2C_CONFIG module is used for sending data to

I2C_CONTROLLER for configuring 11 internal registers of

129

WM8731. The flow chart of I2C_CONFIG is shown in
Figure 14. Assume that I2C CONFIG is iniatially in SEND
state. It moves to WAIT DONE state when “idle” signal
from I2C_CONTROLLER is high. Before moving to WAIT
DONE, it asserts “wr” signal high. If “done” signal is high, it
checks “fail” signal . If “fail” signal is “1”, it moves back to
SEND state for sending that packet again. When it succeeds
in transmitting a packet, it increases the counter by 1. If the
counter equals 11, it moves to FINISH state and stays at this
state forever. If counter is not equal to 11, it moves back to
SEND state for sending remaining packets. I2C_Config
module is implemented using VHDL. The simulation results
shown in Fig verifies the functionality of our design.

Figure 14. I2C Config ASM Chart

C. Data Fetcher Module
In our project, WM8731 is configured to operate in left

justified mode and 16 bit resolution at 48 KHZ sampling
rate. DATA_FETCHER module is used for generating
AUD_ADCLRCK, AUD_DACLRCK, AUD_XCLK,
AUD_BCLK and conversing from serial to parrarel of the
incoming ADC data or parrarel to serial of outgoing DAC
data. The AUD_BCLK signal functions as a bit clock and a
new data bit is transmitted out in the AUD_ADCDAT line at
every high-to-low edge. The AUD_ADCLRCK signal is an
alignment clock that indicates whether the left- or right-
channel data is presented in the adcdat line. The MSB is
transmitted first. For a sampling rate of fs, there are fs
samples per second and each sampled data must be
transferred in the interval of 1/fs second [13]. The interval
becomes the clock period of AUD_ADCLRCK, as shown in
Figure 16. The simulation of this module is shown in Fig 17.

Figure 16. Data Fetcher timing diagram

D. VHDL Filter
The VHDL filter is a band pass filter of range 300Hz to

800 Hz to reduce the influence of external noise. It also
provides the envelope of the signal for simple peak detection
to be done later. Because of the complexity, this filter was
first generated by Matlab and then converted to VHDL by
Matlabs. Its input is 16 bit 2’ complemented data and its
output is 32 bit unsigned data.The filter needs to run at the
same frequency of the sample rate of codec. Therefore, we
use ADC_ADCLRCK as its clock input. The input data is
supplied from the righ channel of audio codec (as shown in
figure 16) [14].

Figure 15. I2C Config simulation

130

E. Peak Detector
This module is used for detecting the peak of the VHDL

filter output (filtered breathing data collected by
microphone). Peak detection algorithm is shown in Fig 18.
At first , we have to find the maximum value in an interval of
time. After that, we compare the maximum values of three
consecutive intervals. If maximum value of the middle
interval is the greatest of 3 maximum values and greater than
a choosen threshold, we detect a peak and a breating is
counted. We do that for all the intervals. We chose the
interval small enough, so that we minimize the probability of
missing any breath even if people breath very fast. By
comparing the peak value with threshold, we can reduce the
false detection from background noise. Based on
observation, a threshold value of 2^30 is choosen for
reducing false peak from external noise. We can decrese the
threshold for increasing the detection range at the cost of
detecting more false peaks.

Figure 18. Peak Detector Algorithm

To check the functionality of the peak detector algorithim,

we transferd the VHDL filter output to the laptop using USB
port. To do that, necessary steps are shown in Fig 19. We
applied the matlab version of the peak detection algorithim
on VHDL filter data set. We checked it for 4 peaks and 5
peaks cases and plotted the results in the matlab. From these
plots, it can easily be seen that our peak detection algorithm

provides desired results (Figures 20 and 21).

Figure 19. Data transferring system

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

9

Samples

A
m

pl
itu

de

Figure 20. 4-Peak case

0 100 200 300 400 500 600
0

1

2

3

4

5
x 10

9

Samples

A
m

pl
itu

de

Figure 21. 5 peaks case

F. Implementation on an FPGA board
After successful simulation of each sections, we have

implemented our Breathing Detection System on Atera DE2-
115 board. The DE2-115 board provides high-quality 16 bit
to 24-bit audio via the Wolfson WM8731 audio CODEC
(Encoder/Decoder). This chip supports microphone-in, line-

Figure 17. Data Fetcher simulation

131

in, and line-out ports, with a sample rate adjustable from 8
kHz to 96 kHz. The WM8731 is controlled via our serial I2C
bus interface, which is connected to pins on the Cyclone IV
E FPGA. A schematic diagram of the audio circuitry is
shown in Figure 22.

Figure 22. Connection between FPGA and Codec

The value of the peak detector counter is converted in BCD
format and displayed on a seven segment display of the DE2-
115 board as shown in Fig 23. We have used an ordinary
microphone to verify the functionality of our system. The
proposed breathing detection system produces expected
results. Currently, we are in the process of testing our system
using several commercially available small sized high
sensitive microphones suitable for using with the crib. We
are mainly focusing on the suitable interval size and
threshold value to tackle the background noise.

Figure 23 Breathing Detection Experiment

IV. DISCUSSION
Our current research is focused on developing a low cost,

non-contact vital signs detection system suitable for using in
a crib. We have designed the necessary components for
sensing temperature and respiration of an infant. However, to
design a reliable system, we need to use several temperature
sensors and microphones on the crib. The whole idea is,
depending on the position of the infant in the crib, different
sensors will produce different output and by continuously
monitoring all the sensors, we can minimize the number of
false alarms. For that purpose, we have designed and

implemented a data transfer controller module (update
module as shown in Fig 24) which will monitor all the
sensors and whenever any updated sensor data is available,
the module will transfer the data to a remote station through
XBee wireless connection. The remote station can process
all the sensor data and generate alarm signal to the caregiver
or a mobile device of parents. A brief description of the
update module is given in the Appendix section.

V. CONCLUSION
In this paper, we have designed and implemented a non-

contact temperature and respiratory rate detection system. A
medical grade infrared temperature sensor and an
economical microphone are used in this research. The system
is designed using Hardware Description Language and
implemented on an FPGA board. With the help of simulation
and experimental results, the functionality of the system is
verified. In our future endeavor, efforts will be made to
calibrate our system and make it appropriate for using in a
crib.

REFERENCES
[1] M. Elliot and A. Coventry, “Critical Care: The Eight Vital Signs of

Patient Monitoring” British Journal of Nursing, vol. 21, pp. 62-625,
May. 2012.

[2] N. Cooper, K. Forest and P. Cramp, Acute Care, 2nd Ed. Malden,
MA: BMJ Books, 2006.

[3] D. Field, Principles and practice of high dependency nursing field,
2nd Ed. Oxford, United Kingdom: Bailliere Tindall, 2006.

[4] Mimo Baby. [Online]. Available: http://mimobaby.com/
[5] Healthdyne 970 Smart Apnea Monitor. [Online]. Available :

http://www.dremed.com/irsrental/product_info.php/cPath/412_413/pr
oducts_id/9336,

[6] J. C. Lin, “Noninvasive microwave measurement of respiration,”
Proc.IEEE, vol. 63, no. 10, pp. 1530–1530, Oct. 1975.

[7] [D. D. Mawhinney, Noninvasive Heart Rate Monitor No. RCAPRRL-
83-CR-13. RCA LABS Princeton NJ, 1983.

[8] E. F.Greneker, “Radar sensing of heartbeat and respiration at a
distance with applications of the technology,” in Radar Systems Conf.
(RADAR 97), Jan. 1997, pp. 150–154.

[9] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on
recent advances in doppler radar sensors for noncontact healthcare
monitoring,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp.
2046–2059, May 2013.

[10] MLX90614 I2C Infrared Thermometer. [Online]. Available :
http://mbed.org/users/4180_1/notebook/mlx90614-i2c-infrared-
thermometer

[11] System Management Bus (SMBus) Specification. [Online].
Available: http://smbus.org/specs/smbus20.pdf

[12] W. W. Peterson, “Cyclic Codes for Error Detection” Proceding of the
IRE, vol .49, pp. 228-235. Jan, 1961

[13] P. P. Chu, “Audio codec controller,” in Embedded Sopc Design with
Nios II Processor and VHDL Examples. Hoboken, New Jersey :
Wiley, 2011, pp 511-525.

[14] B. Berg. (2011, June.). Detection of Breathing and Infant Sleep
Apnea.[Online].Available:
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1041&
context=cpesp

132

 [APPENDIX]

UPDATE MODULE

A. Update module’s signal and data lines
The module’s input signals are the 15-bit data from 8

different sensors and “busy” signal from the Xbee driver.
The output signal consist of “start” signal and 18-bit “cmd”
signal whose first 3 bits indicate the address of the sensor
and last 15 bits are the sensor’s new data.

The incoming 15-bit data of the sensors will go to 8
different update_checker module and an 8-to-1 multiplexer
with output chosen by s_sig signal generated by the
controller. The 15-bit output of the multiplexer will become
the last 15 bits of “cmd” output.

Figure 24. Update module

Each update_checker module contains a buffer (initialized

to 0) used to store the previous data and a comparator to
compare the new data with the old data. If they are different,
the output “update” will be set to high. The module also has
an input called “load”. At positive edge of load signal, the
buffer inside the module will be updated with the new data.

All the “update” output of update_checker will go through

Figure 24. Simulation of Update module

an OR gate and go to the up_avail port of the controller to
tell it that there is updated information.

They will also go to a priority decoder to get the address
of the update with highest priority and this address will go to
the up_add port of the controller.

B. Update module’s controller
The controller has 3 states called “idle”, “communicate”,

and “waiting”
In idle state, if up_avail signal is 1 (new update available),

the controller will check Xbee driver’s “busy” signal to see if
the Xbee is busy or not. If Xbee is busy, the controller will
go to “waiting” state where it will wait until “busy” signal
become 0 to go to “communicate” state, otherwise it will go
to “communicate” state directly.

In “communicate” state, it will load up_add value to an
internal buffer “sel” and output that value to s_sig signal. It
will then send “update” signal and use s_sig signal to update
the value of the buffer of the update with highest priority.
The s_sig is also used as select bit for the 8-to-1 mux and as
the 3-bit header of the “cmd” output. The controller will then
generate a “start” pulse to tell the Xbee driver to get the data
from cmd port. Finally, the controller will return to idle state.

C. Simulation
In this simulation, we will consider 3 different sensors. At

the start, each of the sensor has value different from 0, since
sensor0 has the highest priority, the first command sent to
the Xbee is “000 000 0000 0000 0000 0001” with the first 3
bits “000” for sensor0. Ater the busy signal return to 0, it
will start sending the next command, since sensor0 is now
updated, the update with highest priority is now sensor1. The
second command sent is “001 010 1010 1010 1010” with the
first 3 bits “001” for sensor1. Because the value for sensor0
was changed while the second command was being sent, the
next command sent was not for sensor2 since sensor0 has
higher priority, the third command sent is “000 111 0000
1111 0000”. After the third command is sent, the only new
data is sensor2 so the next command sent is “010 101 0101
0101 0101”. After all data are updated, the update module
return to idle state to wait for new update.

133

