
Evaluation of Wrapper-based Feature Selection using Hard, Moderate, and Easy
Bioinformatics Data

Ahmad Abu Shanab, Taghi M. Khoshtoftaar, and Randall Wald

Florida Atlantic University, Boca Raton, Florida, 33431
Email: {aabusha, khoshgof, rwald1}@fau.edu

Abstract—One of the most challenging problems encountered
when analyzing real-world gene expression datasets is high
dimensionality (overabundance of features/attributes). This
large number of features can lead to suboptimal classification
performance and increased computation time. Feature selec-
tion, whereby only a subset of the original features are used for
building a classification model, is the most commonly used tech-
nique to counter high dimensionality. One category of feature
selection called wrapper-based techniques employ a classifier
to directly find the subset of features which performs best.
Unfortunately, noise can negatively impact the effectiveness of
data mining techniques and subsequently lead to suboptimal
results. Class noise in particular has a detrimental effect on
the classification performance, making datasets perform poorly
across a wide range of classifiers (i.e. having a high “difficulty-
of-learning.”). No previous work has examined the effectiveness
of wrapper-based feature selection when learning from real-
world high dimensional gene expression datasets in the context
of difficulty-of-learning due to noise. To study this effectiveness,
we perform experiments using ten gene expression datasets
which was first determined to be easy-to-learn-from then had
artificial class noise injected in a controlled fashion creating
three levels of difficulty-of-learning (Easy, Moderate, and
Hard). Using the Naı̈ve Bayes learner, we perform wrapper
feature selection followed by classification, using four classifiers
(Naı̈ve Bayes, Multilayer Perceptron, 5-Nearest Neighbor, and
Support Vector Machines), and we compare these results to
the classification performance without feature selection. The
results show that wrapper-based feature selection effectiveness
depends on the choice of learner: for Multilayer Perceptron,
wrapper selection improved performance compared to not
using feature selection, while for Naı̈ve Bayes it slightly
reduced performance and for the remaining learners it further
reduced performance. Because its performance relative to no
feature selection varied depending on the choice of learner,
we recommend that wrapper selection be at least considered
in future bioinformatics experiments, especially if the goal
is gene discovery not classification. Also, as dimensionality
reduction techniques are not only useful but necessary for high-
dimensional bioinformatics datasets, the no-feature-selection
case may not be feasible in practice.

Keywords-Noise injection; difficulty of learning; wrapper-
based feature selection; bioinformatics

I. INTRODUCTION

High dimensionality is one of the common characteristics

exhibited by many real-world gene expression datasets. High

dimensionality refers to datasets where a large number of

features describe each instance, with the number of features

sometimes exceeding the number of instances. This large

number of features makes the analysis of such datasets more

challenging, as in general, most of these features will be

irrelevant to the problem at hand. The process of eliminating

irrelevant features is known as feature selection, which

can lead to better performance by reducing computation

time, increasing the prediction accuracy of inductive models,

and improving model interpretability. There are two broad

categories of feature selection: filter-based techniques and

wrapper-based techniques. Filter-based techniques select a

feature subset using different statistical measures without

involving any learning algorithm. Wrapper-based techniques

use the feedback from a classifier to evaluate subsets of

features. This classifier is usually the same one which will be

used for building the final model. For researchers and prac-

titioners in bioinformatics a small set of features or genes

is very desirable or required. Wrapper feature selection is

particularly useful here because it provides a small set of

features which are unique and not highly correlated with

other features in the selected set.

Noise is another difficulty encountered in many real-

world gene expression datasets. Noise refers to erroneous

(incorrect or missing) values in datasets, which can occur in

the dependent value (class noise) or the independent values

(attribute noise). Noise can hinder data mining techniques

and render the data much harder to learn from. Difficulty-of-

learning [5] refers to the idea that some datasets are simply

more challenging than others, which will result in poor clas-

sification performance across a wide range of classification

algorithms. To the best of our knowledge no previous works

have investigated the effectiveness of wrapper-based feature

selection in the context of difficulty-of-learning due to noise.

In this preliminary work, we create three tiers of difficulty-

of-learning (Easy, Moderate, and Hard) by injecting class

noise in a controlled fashion into ten gene expression

datasets which were first determined to be easy-to-learn-

from. This way we avoid any validity problem related to

using naturally-occurring difficulty that may have hidden

effects. We performed wrapper-based feature selection using

the Naı̈ve Bayes learner to counter high dimensionality.

Classification models were then built using the selected

features using four commonly used classifiers (Naı̈ve Bayes,

Multilayer Perceptron, 5-Nearest Neighbor, and Support
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Vector Machines). The evaluation was carried out using the

area under the ROC curve (AUC) classifier performance

metric. This allowed us to discover the effectiveness of

wrapper-based feature selection under different difficulty-of-

learning levels.

Our results show that the effectiveness of wrapper-based

feature selection varies from one learner to another. In

particular, the Multilayer Perceptron learner has significantly

better classification performance after wrapper selection

compared to no feature selection, while the Naı̈ve Bayes

learner showed only a slight difference in the performance

with all features compared to the wrapper-based features.

However, for the remaining learners, wrapper-based feature

selection worsened the classification performance, and for

these we would not recommend this form of feature selec-

tion. Nevertheless, we still recommend exploring wrapper-

based feature selection as it can sometimes help improve

classification performance, and in addition it can be valu-

able for reasons other than improving the classification

performance such as knowledge discovery (i.e. finding the

most important features) and eliminating redundancy among

the selected features. For these latter goals, “no feature

selection” is not an option.

The remainder of this paper will be organized as follows:

Section II presents related works on the topics of dimen-

sionality, data noise, and difficulty-of-learning. Difficulty-

of-learning and noise injection are described in Section III.

Section IV outlines the methods used in this work, the

feature selection technique, the classifiers, the performance

evaluation, and the datasets. In Section V, we present

our results. Finally, Section VI concludes our paper and

discusses the potential for future work.

II. RELATED WORK

Datasets characterized by high dimensionality have large

number of features describing each instance, or sample

(in most gene expression datasets the number of features

exceeds the number of instances). This overabundance of

features can worsen the performance of classification mod-

els and increase computation time, because usually, most

of these features are useless for building a classification

model. Feature selection is the most popular technique

used to counter high dimensionality, which selects the most

important features and removes irrelevant and redundant

features. Reducing the number of features in a dataset can

improve the classification performance of classifiers, reduce

the complexity of classification models, and speed up the

learning process.

Much research has been done on feature selection. A good

survey on various aspects of the attribute selection problem

was done by Guyon and Elisseeff [8]. This study outlined

key approaches used for attribute selection, including feature

construction, feature ranking, multivariate feature selection,

efficient search methods, and feature validity assessment

methods. The authors divide feature selection techniques

into two broad categories: wrapper-based techniques and

filter-based techniques. Wrapper-based techniques evaluate

subsets of features using a classifier. This classifier is

usually the same one which will be used for building the

final model. On the other hand, filter-based techniques use

different statistical measures to determine which features

have the highest correlation with the class rather than using a

classifier. Another comprehensive survey of feature selection

techniques in bioinformatics can be found in the work of

Saeys et al. [12]. Due to the computational complexity

required by wrapper-based techniques and the chance of

building an overfitted inductive model, most research work

focus on filter-based techniques, especially in bioinformat-

ics. We provide, to our knowledge, the first assessment of

the effectiveness of wrapper-based feature selection in the

context of difficulty-of-learning due to noise.

Noise is another prevalent challenge exhibited by gene ex-

pression datasets. Noise refers to incorrect values in the data,

which can be divided into two types: attribute noise and class

noise. Attribute noise occurs when values in the independent

attributes are incorrect (for example, gene expression levels

not recorded correctly), while class noise refers to incorrect

values in the dependent attribute (for example, cancerous

instances incorrectly classified as noncancerous). Zhu and

Wu [20] examined these two types of noise and concluded

that class noise has a more harmful effect on classification

performance than attribute noise. A comprehensive survey

on the sources, challenges, and solutions to address class

noise can be found in the work of Frénay and Verleysen [7].

They concluded that many open research questions related

to class noise and many avenues remain to be explored.

Others have examined the impact of noise on the sta-

bility/robustness of feature selection through the direct in-

jection of artificial noise. Wald et al. [17] examined six

feature rankers, and their chosen feature lists were compared

both between clean and noise-injected data and among the

multiple runs of noise injection. They showed that ReliefF

was a particularly stable ranker, and that comparing either

noisy vs. clean or noisy vs. noisy gave similar results in

terms of which rankers performed best. Abu Shanab et

al. [1] evaluated six commonly used feature rankers, and

their chosen feature lists were compared under different data

perturbation (noise injection, sampling, and noise injection

followed by sampling) and for different feature subset sizes.

They showed that although stability is an important eval-

uation criterion for feature ranking techniques, a feature

ranker’s stability is not an indicator of its performance in

classification.

Although previous work has evaluated the challenges of

high dimensionality and difficulty-of-learning due to noise,

no previous work evaluated wrapper-based feature selection

in the context of difficulty-of-learning due to noise using

high dimensional gene expression datasets. Wald et al. [18]
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explores the degree to which class imbalance (unequal

distribution of instances between classes) and difficulty of

learning (due to class noise) affect one another and the

best choices of learner and feature selection. Another study,

Dittman et al. [4] investigated the effects of dataset difficulty

due to noise injection on the stability of feature selection.

The authors showed that in general, as the dataset difficulty

increases, the stability of the generated feature subsets

decreases. The present study differs from this earlier work

in several key ways: (1) this study injects class noise into

the data (after having been determined to be relatively easy-

to-learn-from) creating three learning difficulty tiers (Easy,

Moderate, and Hard); (2) this study employs four classifiers

that are commonly-used in the literature and (3) this study

investigates the effectiveness of wrapper-based feature se-

lection when learning from high dimensional datasets with

varying difficulty levels.

III. DIFFICULTY-OF-LEARNING AND NOISE INJECTION

A. Difficulty-of-Learning

Difficulty-of-learning [5] refers to the idea that some

datasets are simply more challenging than others (in the

context of building classification models with a wide range

of classification algorithms), either due to the problems of

noise and imbalanced data or possibly due to other causes

(such as an imprecise class boundary). Previous studies have

shown that it is essential to consider the difficulty level

of the datasets being used [18]. The difficulty level of the

dataset is obtained by first finding the performance of six

commonly-used learners: Naı̈ve Bayes (NB), Multilayer Per-

ceptron (MLP), 5-Nearest Neighbor (5NN), Support Vector

Machines (SVM), and two versions of C4.5 decision trees

(C4.5D and C4.5N) using the Area Under the Receiver

Operating Characteristic (AUC) on the raw dataset, with

no noise injection or other preprocessing. Then the average

AUC value across six learners is found. The datasets are cat-

egorized as Easy, Moderate, and Hard based on the average

AUC and according to the following ranges: Easy(> 0.8),

Moderate ( ≤ 0.8 and > 0.7), and Hard (≤ 0.7). Note

that this process is only used to determine the difficulty-

of-learning and the value found has no further effect on

the experiment. In this work we created the three levels

of learning difficulty by injecting 24 different class noise

patterns into ten high dimensional bioinformatics datasets

which was first determined to be easy-to-learn-from. Due

to the fact that the three difficulty levels are created in

a controlled fashion (using noise injection), we avoid any

validity problems associated with analyzing dataset that are

already difficult-to-learn-from. Naturally-occurring difficulty

may have hidden effects that might cause validity problems.

Thus, to ensure that differences between difficulty levels are

only caused by the difficulty itself, and not by unknown

factors, it is necessary to create this difficulty through the

introduction of artificial noise.

B. Noise Injection

We used the same noise injection mechanism proposed

by Van Hulse et al. [15] where class noise is injected

into the training datasets using two simulation parameters.

That is, the levels of class noise are regulated by two

noise parameters. The first parameter, denoted α (α =
10%, 20%, 30%, 40%, 50%), is used to determine the overall

class noise level in the data. Precisely, α is the noise

level relative to the number of instances belonging to the

positive class, i.e., the number of examples to be injected

with noise is 2 × α × |P |, where |P | is the number of

examples in the smaller class (often referred to as the

positive class). This ensures that the positive class is not

drastically impacted by the level of corruption, especially

if the data is highly imbalanced. The second parameter,

denoted β (β = 0%, 25%, 50%, 75%, 100%), represents the

percentage of class noise injected in the positive instances

and is referred to as noise distribution. Note also that because

the number of instances to be corrupted is tied to the

number of minority-class instances, the quantity of noise

injected into the dataset can be somewhat misleading: more

imbalanced datasets will be injected with less noise overall,

even at higher noise levels. With five values for α and β,

there are 24 different noise injection patterns (because the

case with α = 50% and β = 100% would convert all

positive-class instances into negative-class instances, leaving

no counterexamples to learn from).

IV. METHODS

A. Wrapper Feature Selection and Performance Metric

In this study, we examine wrapper-based feature selection,

since filter-based techniques are not able to consider redun-

dancy between features. This is important because features

can be useless for building a classification model for two

reasons: either they contain information already represented

in other features (i.e. redundant) or they do not have much

correlation with the class (i.e. irrelevant). Additionally, no

previous study investigated the effectiveness of wrapper-

based feature selection when learning from real-world high

dimensional gene expression datasets in the context of

difficulty-of-learning due to noise. Wrapper-based subset

selection evaluates subsets of features using a classifier.

The chosen subset is used to build a classification model,

and the performance of this model is then used as the

score for that feature subset. In this work, we use the

Naı̈ve Bayes (discussed further in Section IV-B) classifier

to build our models. We selected this learner because in

practice it is a very effective classifier on a wide variety

of datasets [6], as well as its relative simplicity compared

to other learners (e.g., SVM and MLP). Note that Naı̈ve

Bayes was used within the wrapper regardless of the learner

which would be eventually used to build the classification

model; future studies will compare different learners within
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the wrapper step. Due to the fact that our data is imbalanced,

we use the AUC (Area Under the ROC Curve) metric as the

performance metric within the wrapper. The AUC (discussed

further in Section IV-C) performance metric has also been

proven to be statistically consistent [10]. One run of five-

fold cross-validation (discussed further in Section IV-C) was

used for training and testing the models used for wrapper

feature selection.

As wrapper selection does not itself specify a search

technique to find the feature subsets, a search algorithm must

be used. Based on preliminary experimentation, we chose the

Greedy Stepwise approach, which uses forward selection to

build the full feature subset starting from the empty set. At

each point in the process, the algorithm creates a new family

of potential feature subsets by adding every feature (one at

a time) to the current best-known set. The merit of all these

sets are evaluated, and whichever performs best is the new

best-known set. This algorithm stops when none of the new

sets outperform the previous best-known set, or when a user-

defined maximum number of features (in our study, 100) is

reached.

B. Classifiers

Four classifiers were used in this study: Naı̈ve Bayes

(NB), Multilayer Perceptron (MLP), 5-Nearest Neighbor

(5NN), and Support Vector Machines (SVM). These were

selected due to their diversity and their prevalence in the

literature. All classifiers were built using the Weka machine

learning software [19], using the default parameters unless

noted otherwise. Note that any changes to default param-

eter values were applied when experimentation showed an

overall improvement of the classification performance [16].

Naı̈ve Bayes begins with a probability model which

calculates the posterior probability that the instance is the

member of a specific class. The classifier would assign

the instance to the class for which it has the highest

posterior. Unfortunately, it is very difficult to calculate the

posterior directly. Therefore it is necessary to use Bayes’ rule

which states that the posterior equals the ratio of the prior

multiplied by the likelihood over the evidence. In reality,

this process can be simplified by certain assumptions. The

evidence is always constant for the specific data set and

therefore can be ignored for the purposes of classification.

The likelihood formula, p(F1, . . . , Fn|C) can be simplified

to
∏

i p(Fi|C) due to the naive assumption that all of the

features are conditionally independent of all of the other

features. This naive assumption with the removal of the

evidence parameter creates the Naı̈ve Bayes classifier [19].

p(C|F1, . . . , Fn) = p(C)
∏

i

p(Fi|C)

Multilayer Perceptron is a type of artificial neural net-

work. Artificial neural networks consist of nodes which are

arranged in sets called layers. Each node in a layer has a

connection coming from every node in the layer before it

and going to every node in the layer after it. Each node

takes the weighted sum of all of the input nodes. Along with

the weighted sums, an activation function is also applied.

The application of the activation function to the result of

the weighted sum allows for a more clearly defined result

by further separating the instances in the two classes from

each other. Neural networks are well known for being robust

to redundant features. However, neural networks sometimes

have problems with overfitting [9]. In this study, a network

with one hidden layer consisting of three nodes was used,

and the validationSetSize parameter was set to “10” to

leave 10% of the data aside for validating when to stop the

training process.

The k-nearest neighbors, or k-NN, learner is an example

of an instance based and lazy learning algorithm. Instance

based algorithms use only the training data without creating

statistics on which to base their hypotheses. The k-NN

learner does this by calculating the distance of the test

sample from every training instance, and the predicted class

is derived from the k nearest neighbors. In the k-NN learner,

when there is a test sample that needs to be classified, the

classes for each of the k closest training samples (a k of

five was used in this paper, hence the name “5-Nearest

Neighbors”) are tabulated and the weight of each neighbor

is determined by taking a measurement of 1
distance where

distance is the distance from the test sample. After the

classes and weights are tabulated, all of the weights from the

neighbors of the positive class together and all of the weights

of the negative class are added together. The prediction will

be the class with the largest cumulative weight [19].

Support Vector Machines, or SVM, is one popular choice

of classification algorithm. One of the most efficient ways to

classify between two classes is to assume that both classes

are linearly separated from each other. This assumption

allows us to use a discriminant to split the instances into

the two classes before looking at the distribution between the

classes. A linear discriminant uses the formula g(x|w, ω0) =
wTx + ω0. In the case of the linear discriminant the only

data that needs to be learned is the weight vector, w and

the bias ω0. One aspect that must be addressed is that

there can be multiple discriminants that correctly classify the

two classes. SVM is a linear discriminant classifier which

assumes that the best discriminant maximizes the distance

between the two classes. This is measured in the distance

from the discriminant to the samples of both classes [11]. For

our experiments, the complexity constant “c” was changed

from 1.0 to 5.0 and the “buildLogisticModels” parameter

was set to TRUE.

C. Performance Evaluation and Cross Validation

We used four runs of five-fold cross-validation [19] to

build and test our models. Cross-validation allows for all

instances to participate both in training and testing models,
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without the risk of overfitting which can come from using

an instance for both at the same time. The cross-validation

process begins by dividing the data into N equal-size subsets

(folds), with the class imbalance level in each fold made as

close as possible to the original level of imbalance. One of

these folds is held aside as a test (hold-out) fold, while the

remaining N − 1 folds are combined and collectively called

the training fold. On this training fold, noise is first injected

according to one of the 24 noise patterns, and then models

are built on this noisy training fold and evaluated on the

clean test fold. Note that in addition to the noise injection,

wrapper feature selection and model builiding process is

performed solely on the training dataset made up of the

N − 1 folds. The noise injection, feature selection, and

model-building process is repeated N times, so that each

fold is used as the hold-out fold exactly once. The value

N = 5 was used in this paper. Once all N folds have been

used as the test datasets, the results from all test datasets are

integrated into a single performance value for that dataset.

This overall process is performed four times to reduce bias

due to a chance split.

Due to the presence of imbalanced data, we needed to

measure this performance using a metric which is able to

balance increasing the number of true positives (correctly-

classified instances of the minority class) without incurring

too many false positives (members of the majority class in-

correctly classified as being in the minority class). Thus, we

chose the Area Under the Receiver Operating Characteristic

(ROC) Curve (AUC) metric [19]. AUC builds a graph of the

True Positive Rate vs. True Negative Rate as the classifier

decision threshold is varied, and then uses the area under

this graph as the performance across all decision thresholds.

D. Datasets

Ten bioinformatics datasets were used in our experiments,

as detailed in Table I. They are sorted based on their level

of class imbalance, as presented in the % Minority Instances

column. They are all binary class datasets. That is, for all

the datasets, each instance is assigned one of two class

labels. Note that all datasets are high dimensional (that

is, they have a large number of attributes). In addition

to the basic properties of each dataset, the final column

presents the Average AUC for the given dataset. This is

the classification performance found when using the six

commonly-used learners: Naı̈ve Bayes (NB), Multilayer Per-

ceptron (MLP), 5-Nearest Neighbor (5NN), Support Vector

Machines (SVM), and two versions of C4.5 decision trees

(C4.5D and C4.5N) on the raw datasets as presented, with

no noise injection or other preprocessing. Note that all of

these values are above 0.8, which is our metric for Easy

datasets.

None of these “raw” datasets were directly used in our

experiments, however. Our experimental data was generated

by injecting 24 noise patterns into these datasets and then

labeling the results as “Easy,” “Moderate,” or “Hard” based

on their difficulty of learning. In total, these categories had

141, 64, and 35 datasets, respectively. Due to the fact that

the three difficulty levels are created in a controlled fashion

(using noise injection), we avoid any validity problems

associated with analyzing dataset that are already difficult-

to-learn-from.

V. RESULTS

In this work, we compare the use of wrapper feature

selection with no feature selection. This study employs the

NB learner and the AUC performance metric inside the

wrapper process. Then, final (external) classification models

are built with the selected features using four different learn-

ers (NB, MLP, 5NN, and SVM) which were then evaluated

using the same metric. All experiments were performed on

bioinformatics data which was first determined to be easy-to-

learn-from, and which then had artificial class noise injected

in a controlled fashion creating three levels of difficulty-

of-learning (Easy, Moderate, and Hard). We used Greedy

Stepwise approach as the search algorithm, and to avoid any

validity problems related to overfitting we used four runs

of five-fold cross-validation to build and test our models,

presenting the average values across all folds and runs.

The results are presented in Tables II. Within each column,

bold values represent the best AUC value, and italics values

represent the worst value.

We find that whether or not wrapper selection will im-

prove performance compared to the no-selection case will

depend on the choice of learner: for the MLP learner, the

performance with the selected features was much better than

the performance using all features, while the NB learner

showed only slightly better performance with all features

than with the wrapper-based features. However, for the

remaining learners, wrapper-based feature selection led to

a significant decrease in classification performance, and

for these we would not recommend this form of feature

selection.

Nonetheless, wrapper-based feature selection is useful

beyond improving classification performance: it can help

reveal which features are most important, giving a much

smaller list compared to the full feature list and eliminating

redundant features which might clutter up the list. For

our datasets, wrapper-based feature selection chose fewer

than 100 features, compared to the full feature sets which

contained between 6,001 and 15,155 features. Even though

wrapper-based feature selection was not always useful for

improving classification performance, we still recommend

that it be considered because it is not obvious in advance

whether a given choice of learner will benefit or suffer from

the use of wrapper-based feature selection.
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Name
# Minority Total # % Minority # of Average
Instances of Instances Instances Attributes AUC

Ovarian Cancer [13] 91 253 35.97% 15155 0.97388
ALL AML Leukemia [13] 25 72 34.72% 7130 0.90908

CNS MAT [3] 30 90 33.33% 7130 0.83551
Prostate MAT [3] 26 89 29.21% 6001 0.90466

MLL Leukemia [13] 20 72 27.78% 12583 0.89615
Lymphoma MAT [3] 19 77 24.68% 7130 0.83659

ALL [13] 79 327 24.16% 12559 0.84748
Lung Clean 23 132 17.42% 12601 0.92351

Lung Cancer [14] 31 181 17.13% 12534 0.93885
Lung Michigan [2] 10 96 10.42% 7130 0.97384

Table I: Details of the Datasets

Learner

Difficulty-of-Learning
Easy Moderate Hard

No Wrapper No Wrapper No Wrapper
Feature Selection Feature Selection Feature Selection Feature Selection Feature Selection Feature Selection

NB 0.876450 0.867986 0.755179 0.721312 0.630153 0.621130
MLP 0.784365 0.894154 0.667342 0.778169 0.599262 0.655581
5-NN 0.947170 0.873441 0.868226 0.746842 0.728286 0.613167
SVM 0.962189 0.892210 0.901720 0.770426 0.763046 0.633657

Table II: Average AUC Values For The Three Difficulty Levels (Easy, Moderate, Hard)

VI. CONCLUSION

To the best of our knowledge this is the first study to

evaluate wrapper-based feature selection when learning from

high dimensional bioinformatics datasets in the context of

difficulty-of-learning due to noise. We injected 24 different

combinations of noise level and noise distribution into ten

gene expression datasets which was first determined to

be easy-to-learn-from creating three levels of difficulty-of-

learning (Easy, Moderate, and Hard). We then performed

wrapper feature selection using the Naı̈ve Bayes learner

internally followed by external classification using one

of four learners (Na¨ve Bayes, Multilayer Perceptron, 5-

Nearest Neighbor, Support Vector Machines, and Logistic

Regression). We used the area under the ROC curve (AUC)

performance metric within the wrapper and to evaluate the

final classification models due to the presence of imbalanced

data.

Our experimental results demonstrate that the effective-

ness of wrapper-based feature selection when learning from

noisy high dimensional datasets depends on the choice of

learner: with Multilayer Perceptron, wrapper-based feature

selection is better than no feature selection, while with Naı̈ve

Bayes we find that wrapper-based feature selection is slightly

worse than no feature selection, and with the remaining two

learners it is meaningfully worse than no feature selection.

However, because it may not be clear in advance whether

wrapper feature selection will improve or worsen a given

choice of learner, and due to the other benefits gained when

employing wrapper feature selection (such as finding the

most important features which are unique and not highly

correlated with other features), we recommend exploring the

use of wrapper-based feature selection for bioinformatics,

especially if feature reduction (and elimination of redundant

features) is more important than raw classification perfor-

mance.

Future research may involve conducting more experi-

ments, using other subset evaluation techniques as well

as other learners within the wrapper beyond Naı̈ve Bayes,

examining more datasets from other application domains,

and considering other preprocessing techniques that are used

to counter class imbalance (e.g. data sampling).
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