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Abstract—The large number of genes found in most gene mi-
croarray datasets demands the use of feature selection techniques
to alleviate this problem of high-dimensionality. However, the
computational cost of filter-based subset evaluation techniques
such as Correlation-Based Feature Selection (CFS) has generally
limited the use of these techniques to smaller datasets, or
at least smaller collections of gene microarray datasets. No
previous work has applied CFS to a large and diverse range
of bioinformatics datasets. To address this deficit, we employ
nine different microarray datasets exhibiting a wide range of
characteristics in terms of dataset balance (fraction of instances
found in the minority class) and dataset difficulty of learning
(overall difficulty of building effective classification models on
raw, pre-feature-selection datasets). We also use five classification
learners to discover how these perform in conjunction with CFS,
along with five performance metrics to give a broad perspective
on our results. The results find that CFS can be used to help
build effective models, in particular when used with the 5-Nearest
Neighbors learner on data that is Easy or Moderate (in terms of
difficulty-of-learning) or Balanced (in terms of class distribution).
For other types of data, the optimal learner varies, although
in most cases the Logistic Regression learner works worst in
conjunction with CFS.

Keywords-Correlation-Based Feature Selection; Bioinformat-
ics; Balance; Difficulty of Learning

I. INTRODUCTION

Gene microarrays (gene chips) are an important technology

in the domain of bioinformatics. These gene chips allow re-

searchers to quickly identify the expression levels of thousands

of genes within a given tissue sample, rather than performing

analysis on each gene separately. With this technology, re-

searchers can find paired populations (such as individuals with

or without a given form of cancer, or patients who responded

or didn’t respond to a particular cancer treatment) and begin

to understand the underlying genetic factors which distinguish

these populations (classes). However, the very scale of data

available from these experiments can hinder analysis, as it is

difficult to directly examine the levels of thousands of genes.

Thus, feature selection techniques borrowed from the domain

of data mining and machine learning become necessary.

Feature selection is the general challenge of reducing the

number of features (independent attributes) in a dataset. As

high-dimensionality (the problem of having too many features

per instance) is found across many application domains, not

just bioinformatics, it has been studied at length, and three

categories of feature selection have been developed. Filter-

based feature ranking techniques apply a statistical filter to

each feature individually, assigning scores to the features.

These scores are then used to rank the features, and practi-

tioners can select those above a given threshold. Filter-based

subset evaluation, on the other hand, applies filters to complete

gene subsets, evaluating how closely these genes are related

not just to the class, but also to one another. This strategy

of considering whole subsets is also used by wrapper-based

subset evaluation, but the wrapper-based method does not use

statistical filters to perform its calculations, instead relying

on classification models to directly determine which feature

subsets can be used to build the most effective model.

Each of these techniques has its advantages and disad-

vantages. Filter-based ranking is much more computationally

efficient than the other two, but this comes at the price

of not recognizing redundant features (those which contain

information already present in the feature subset); it is only

capable of discarding irrelevant features (those which lack

any connection to the class whatsoever). Both of the subset-

based techniques have the opposite problems (able to detect

both irrelevant and redundant features, at a computational

cost), and between these two, wrapper-based approaches are

even more time intensive but hold the potential to find the

features most important to the specific problem of building

classification models [20]. Nonetheless, in application domains

where finding the relevant features may be the end goal unto

itself (such as gene microarray studies which seek to find genes

relevant to cancer detection and patient response prediction),

finding an effective and non-redundant subset with filter-based

subset selection bears further study.

One filter-based subset selection technique in particular,

Correlation-Based Feature Selection (CFS) [10], has been

popular in other domains but little-used in bioinformatics.

Moreover, those studies which have considered this technique

have used small collections of datasets, and have not examined

two other problems which can affect a wide range of gene

microarray datasets: class imbalance and difficulty of learning.

Class imbalance occurs when the fraction of instances in each

class are not equal; for example, in a binary dataset (with

only two classes), this occurs if the minority dataset has far

fewer instances than the majority class. As some studies can

consider rare cancers or drugs which only a small fraction of

the population responds to, it is important to understand which

models perform best in these trying circumstances. In addition,

some datasets are simply very challenging to build models

from, even when comparing raw models without enhancements
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such as feature selection. These difficult datasets may be noisy

or may simply have a very weak class boundary, but some

problem domains are prone to such datasets, and again it

is important to consider which approaches and techniques

are most effective here. Therefore, we designed this work to

showcase the effectiveness of CFS in an appropriate manner.

To better understand both of these concerns in the context

of feature selection, we employ CFS along with nine datasets

which exhibit a wide range of difficulty and balance. The

present work is the first such study to use CFS on such

a large and diverse collection of datasets. Our experiments

also include five classification learners (5-Nearest Neighbor,

Logistic Regression, Multi-Layer Perceptron, Naı̈ve Bayes,

and Support Vector Machines), along with five performance

metrics (Area Under the Receiver Operating Characteristic

(ROC) Curve, Area Under the Precision-Recall Curve, Arith-

metic Mean of True Positive Rate and True Negative Rate,

Geometric Mean of True Positive Rate and True Negative Rate,

and Overall Accuracy) to study the role of class imbalance

on performance measurement. Our results show that overall,

and on the Easy, Moderate, and Balanced datasets, the best

learner is generally 5-Nearest Neighbor. However, with the

remaining categories of dataset (Hard, Slightly Imbalanced,

and Imbalanced), the results are less clear, with all the learners

other than Logistic Regression (which is almost always the

worst technique) giving the best results for some choice of

dataset group and performance metric. These variations show

that studying the use of CFS on a variety of datasets gives

important insight into how the nature of the data can affect

the performance of classification on that data.

The remainder of this paper will be organized as follows:

Section II will review related work on the use of CFS in

the context of bioinformatics. Section III will detail the CFS

method itself along with the learner and performance metrics

used in this paper. Section IV will discuss the datasets used

in this paper, with explanation of how they vary in terms

of balance and difficulty of learning. In Section V, we will

present our results and discussion of our results. Finally, in

Section VI we will conclude and present our suggestions for

future work.

II. RELATED WORK

Although feature selection is widely recognized as being

an essential element of bioinformatics (and in particular gene

microarray analysis) [8], the majority of work has focused on

filter-based feature ranking [13]. However, some surveys, such

as Sayes et al. [20], do specifically address all types of feature

selection, including filter-based feature subset evaluation. One

particularly-popular form of filter-based subset evaluation is

Correlation-Based Feature Selection (CFS), proposed by Mark

Hall [10]. This approach is designed to judge the quality

of a feature subset by balancing the individual correlations

between each constituent feature and the class against the

overall correlation among the features of the subset. CFS

has become a popular choice for filter-based subset selection

across a number of application domains [9].

Despite the complexity of CFS and the very large number

of features typically found in the bioinformatics application

domain, a handful of papers have applied this technique to

gene microarray datasets. Yeoh et al. [29] examined the gene

expression profiles of pediatric acute lymphoblastic leukemia

patients to understand the different subtypes of leukemia

exhibited by the patients, as well as to learn whether these

expression profiles could be predictive of relapse following

treatment. To build their models, CFS was used so long as it

chose 20 or fewer features, with this limit imposed to reduce

the computational complexity (in the event CFS wanted to

find more features, it was halted and a feature ranker was

used instead). These models proved effective at predicting both

cancer subtype and patient response. Liu et al. [16] consider

two datasets, the first being the same as Yeoh et al.’s work

(although only the cancer subtypes were considered by Liu

et al.), and the other dataset containing proteomic data from

ovarian cancer patients. Their goal was to compare six feature

selection approaches, including CFS. For the leukemia data

(which was again a multi-class subtype prediction problem),

CFS proved to help build the best classification models, and

it was also the best for selecting the most important protein

markers. Yu and Liu proposed a new algorithm for feature

selection [30], [31] based on ranking the features and then

(starting from the highest-ranked feature) eliminating lower-

ranked features if they are more correlated with other features

than with the class value, and in both papers they include CFS

both among their inspirations and among those techniques they

compare with their proposed approach. In their first paper [31],

the techniques are compared using four benchmark cancer-

identification gene expression datasets, while their second

paper [30] considers both synthetic and benchmark data (using

10 datasets for the latter, although fewer than half are from the

domain of bioinformatics). Finally, Wang et al. [27] contrast

filter-based feature ranking, CFS, and wrapper-based subset

evaluation on a different acute leukemia dataset (not the one

used by Yeoh et al. and Liu et al.) as well as a second

dataset representing different subtypes of diffuse large B-cell

lymphoma. They note that one gene is consistently selected by

all methods for the first dataset, and that this gene shows very

significant differences in expression level between their two

types of acute leukemia: however, less consensus was found

on the second dataset. Unlike these prior works, the present

work exclusively focuses on high-dimensional bioinformatics

datasets, and considers a much larger and more diverse col-

lection with such datasets (considering nine datasets which

vary both in balance level and pre-feature-selection difficulty

of learning).

Class imbalance is a prevalent problem within bioinformat-

ics datasets [3]. The reason is that the class of interest usually

has very few samples while the other class is much larger, with

ratios of 1:100 or even 1:1000. This issue has been studied by

Van Hulse et al. [23], who compared the correlations among

nine rankers on five imbalanced datasets and a number of data

sampling approaches (algorithms to improve the balance of

datasets). Another example is Ramaswamy et al. [19] who
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performed a study on a dataset whose class of interest made up

only 16% of the total dataset. Abu Shanab et al. [1] examined

the effects of noisy imbalanced bioinformatics datasets which

have been resampled on the stability of feature rankers. The

presence of class imbalance has the potential to affect the

classification performance of classifiers applied toward the

imbalanced datasets.

Perhaps the root of the trouble with class imbalance is in

how the classification algorithms are designed. A majority of

classification algorithms assume that the classes involved will

have an equal presence in the dataset [12]. Lusa et al. [17]

found that there is a bias towards the majority class when

working with imbalanced data. They also stated that unless

we take steps to combat class imbalance, the performance

of the analysis will suffer. This phenomenon may be due to

two different factors: feature selection with certain classifiers

focuses on accuracy and so will focus on the majority class,

and due to the small number of instances the outliers are given

more weight and can distort the data [2]. Recommendations

for combating some of these issues include applying data

sampling methods [24] which is a common method for dealing

with class imbalance, either adding instances to the minority

class (oversampling) or removing instances from the majority

class (undersampling).

On the other hand, relatively little work has considered

the problem of difficulty of learning: that is, how some

datasets contain noise and imprecise class boundaries and how

these can have effects beyond simply reducing classification

performance. Three works recently published by our research

group consider this problem in more detail, however. We

considered the problem of using gene microarray datasets to

predict whether patients will show therapeutic response to

different cancer treatments, and discussed how this problem

is inherently very challenging (as all patients will be suffering

from the same cancer, and they will only vary from one another

insofar as some respond to treatment while others do not) [25].

We discussed how when attempting to compare an unrelated

factor (such as degree of class imbalance), it is important to

observe whether each level of the factor being considered

has an equivalent level of difficulty of learning, and how

this has the potential to give misleading results if different

levels of difficulty of learning are mistaken to be different

levels of the factor of interest [6]. And we also explored

how difficulty of learning, a concept inherently tied to the

classification performance of various datasets, can also impair

the stability of feature selection techniques without regard to

their eventual classification performance, demonstrating that

this concept is broader than classification alone [26]. Overall,

for these reasons we felt it was important to consider our work

in this paper in the context of difficulty of learning.

III. METHODS

A total of five learners were used along with the correlation-

based feature selection (CFS) technique in this case study.

CFS itself is presented in Section III-A, while the learners

are presented individually in Section III-B, and our perfor-

mance metrics and evaluation procedure are discussed in

Section III-C.

A. Correlation-Based Feature Selection

For our experiments, Correlation-Based Feature Selection

(CFS) [10] was used to choose the best feature subsets for

each dataset. This technique employs the Pearson correlation

coefficient [14], a correlation metric designed to balance the

need to have the features correlate with the class and the

need to have the features not correlate with one another. The

Pearson correlation coefficient is found with the following

formula:

MS =
krcf√

k + k(k − 1)rff

In this formula, MS is the merit of the current set of features,

k is the number of features, rcf is the mean of the correlations

between each feature and the class, and rff is the mean

of the pairwise correlations between every two features. In

both cases, correlations are calculated using symmetric uncer-

tainty [28], an information-theoretic measure of how changes

in one feature affect the uncertainty of the other, and which

compensates for inherent entropy in either feature. As desired,

the numerator increases when the set of features is particularly

good at classifying the data, while the denominator increases

when the set has a great deal of self-correlation, which implies

redundancy. Therefore, the larger the MS the better the subset.

In order to use this metric for feature selection, we need

an approach to search through the realm of possible feature

subsets in order to find the one which scores the highest. As the

exhaustive approach is computationally infeasible (requiring

that O(2n) subsets be evaluated for n features), we chose a

more efficient strategy: Greedy Stepwise. This starts with an

empty “working” feature set and progressively adds features,

one at a time, until a stopping criterion is reached. At each

step, we consider all feature subsets which include the current

“working” feature subset and exactly one feature not presently

in that set. We find the quality of each of these subsets (using

the CFS metric), and then choose which of these gives the best

performance to be the new “working” subset. This process is

iterated until none of the new subsets improve performance,

or until the “working” subset has at least 100 features (our

stopping criterion). The final “working” subset is then given

as the procedure’s output. We chose 100 features as that is a

appropriate feature subset size [7].

B. Learners

Five learners were chosen for our analysis: 5-Nearest Neigh-

bor (5-NN), Logistic Regression (LR), Multi-Layer Perceptron

(MLP), Naı̈ve Bayes (NB), and Support Vector Machines

(SVM). These were all chosen to give a wide range of

classification models which do not include embedded feature

selection. All models were built using the WEKA machine

learning toolkit [11], using default parameters unless other-

wise specified. Note that any changes to default parameter

values were applied when experimentation showed an overall
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Dataset
Name

# Minority Total # % Minority # of Average
Difficulty Instances of Instances Instances Attributes AUC

Easy
BCancer 50k [5] 200 400 50.00% 54614 0.85636

Lung [22] 64 203 31.53% 12601 0.86851
ALL [22] 79 327 24.16% 12559 0.84748

Moderate
Prostate [22] 59 136 43.38% 12601 0.78225

Colon [23] 22 62 35.48% 2001 0.79413
Brain Tumor [22] 23 90 25.56% 27680 0.72096

Hard
DLBCL NIH [22] 102 240 42.50% 7400 0.58527
Chanrion 2008 [4] 52 155 33.55% 22657 0.67207
Pawitan 2005 [18] 40 159 25.16% 12066 0.61082

TABLE I: Details of the Datasets

improvement of the classification performance [24]. Due to

space limitations, we only give a brief outline of these tech-

niques; for further information, we direct readers to Witten

and Frank [28].

5-NN is a lazy instance-based learner which does not build

a model per se but which uses the training data directly to

make predictions about the test data. In particular, to classify

a given instance, it finds the five nearest neighbors from

the training set for that instance, and then has these vote

(using weight by 1/distance) on the proper class value. LR

is a simple regression model which uses the logistic function

to normalize the probability between 0 and 1. MLP is a

multi-layer perceptron-based learner, with a single hidden

layer contain 3 nodes and 10% of the data held back for

validation of when to stop the backpropogation-based learning

process. NB is a Bayesian learner which uses Bayes’s Theorem

to find the posterior probability of the class values given

the observed feature values. Although NB makes the naı̈ve

assumption that all feature values are statistically indepen-

dent, it has been show to give good performance even when

this assumption is not true [15]. SVM is a Support Vector

Machine designed to find the maximal margin hyperplane

separating the classes, with a complexity constant of 5.0 and

the buildLogisticModels parameter set to true. The

default linear kernel was used.

C. Performance Measurement and Cross-Validation

The presence of imbalanced data highlights the importance

of choosing an appropriate performance metric, in order to

ensure that minority-class instances (also known as positive

instances) do not all end up misclassified [21]. In addition,

the choice of metric can affect the outcome, and it is not

always clear which result is most meaningful. For these

reasons, we use five different performance metrics: Area Under

the Receiver Operating Characteristic Curve (AUC), Area

Under the Precision-Recall Curve (PRC), Best Arithmetic

Mean (AMean), Best Geometric Mean (GMean), and Default

Accuracy (Acc). AUC builds a graph of the True Positive Rate

vs. True Negative Rate as the classifier decision threshold

is varied, and then uses the area under this graph as the

performance across all decision thresholds. PRC is similar,

only the curve graphs Precision vs. Recall. Both GMean and

AMean consider the mean value of True Positive Rate and

True Negative Rate, considering different threshold values and

choosing the value which optimizes the metric; they differ in

whether they find the arithmetic or geometric means, respec-

tively. Finally, Acc is simply the fraction of instances which

are classified correctly, regardless of their class membership;

although this metric is generally inappropriate for use on

imbalanced data, we present it for completeness.

Cross-validation was used for building and testing the

classification models. This process begins by dividing the data

into N equal-size subsets (folds), and then models are built

(trained) on N − 1 of these and tested on the N th fold,

called the hold-out fold. This process is repeated N times,

so that each fold is used as the hold-out fold exactly once.

For building our models, we let N = 5, giving five-fold cross

validation. In order to avoid the risk of a bad split, the entire

cross-validation process was repeated a total of four times.

The five performance metrics were calculated by collecting

the results across all test folds and creating a single value for

each run of cross-validation; thus, for each dataset we have

four values for each combination of learner and performance

metric. These values were then averaged together (across

the appropriate datasets) for our results tables. Note that the

feature selection process is performed on all twenty datasets

generated by each instance of the four runs of five-fold cross-

validation.

IV. CASE STUDY

In this case study, we consider nine datasets across the

domains of bioinformatics and patient response prediction. A

summary of these datasets is found in Table I. All datasets

are gene microarray datasets. That is, the features represent

the expression levels of various genes, as measured by how

strongly different gene probes react to the mRNA produced

from a tissue sample, and the class values (all of which are

binary) come from whether a patient has cancer, what type of

cancer a patient has, or whether the patient responded well to

a particular cancer treatment. In particular, the Chanrion 2008

and Pawitan 2005 datasets come from the domain of patient

response prediction, while all other datasets pertain to cancer

detection or identification. Due to space limitations, we cannot

elaborate further on the details of each individual dataset; for

further information, please refer to the citations found within

the table.

The last column, Average AUC, refers to the classification

performance on these datasets when building models without
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feature selection. This is used to show that some of these

datasets are notable for being difficult to model (such that

models do not perform well), while others are particularly

easy. One of the goals of our experiments was to determine

how different dataset characteristics affect the optimal choices

for CFS feature selection, and this “difficulty of learning”

value (also known as “dataset difficulty”) was chosen as

an important characteristic to study [26]. The values in the

table were calculated using a set of six different classification

models: 5-NN, MLP, NB, SVM, and two versions of a C4.5

decision tree (C4.5 D and C4.5 N). Descriptions of the learners

other than C4.5-D and C4.5-N are found in Section III-B.

C4.5 D is the C4.5 decision tree classifier with the default pa-

rameter values. C4.5 N is the same classifier but with Laplace

smoothing enabled and pruning disabled. All of these learners

are available using the WEKA Data Mining toolkit [11], and

all default values were used unless otherwise specified. Note

that the results from these classifiers (without feature selection)

were used only to determine the difficulty of the datasets and

have no further bearing on the rest of the experiment.

As discussed, one major goal of our experiments was to dis-

cover the influence of dataset characteristics on classification

performance in the context of filter-based feature selection. In

particular, we chose to focus on two different characteristics:

dataset difficulty and balance level. Dataset difficulty was

defined based on the average AUC performance (as outlined

above), and balance level was specified by considering the

percentage of instances found in the minority class (as all

of our datasets are binary, there is only one minority class).

To facilitate our experiments, we created three levels of each

of these factors. For difficulty of learning, the datasets were

divided into Easy (Average AUC ≥ 0.8), Moderate (Average

AUC < 0.8 and ≥ 0.7), and Hard (Average AUC < 0.7).

For balance level, we divided the datasets into Balanced

(% Minority > 40%), Slightly Imbalanced (% Minority ≤
40% and ≥ 26%), and Imbalanced (% Minority < 26%). In

Table I, we separated the Easy, Moderate, and Hard datasets

into different physical groupings, and sort by balance level

within each grouping; in addition, all Balanced datasets have

their names printed in bold, and all Imbalanced datasets have

their names printed in italics. Note that there is exactly one

dataset for each combination of balance level and difficulty of

learning.

V. RESULTS

Our results for building classification models following

feature selection are presented in Tables II through IV. Each

table presents the classification results in terms of the five

performance metrics (as specified by the column) when using

the learner given by the row. All datasets first had CFS applied

to reduce their features, as discussed in III-A. Table II includes

the results averaged across all nine datasets, while Tables III

and IV break the datasets into three groups based on the levels

of dataset difficulty and balance, respectively. For each group

of datasets (the whole table for Table II, or each of the three

blocks within Tables III and IV), the best and worst learner

Learner
Performance Metric

AUC PRC AMean GMean Acc
5-NN 0.84814 0.80492 83.48115 82.99964 0.83088
LR 0.79405 0.72390 77.63286 77.24868 0.77465

MLP 0.84924 0.80183 82.99260 82.76716 0.82916
NB 0.83981 0.76556 82.03809 81.81581 0.80161

SVM 0.85192 0.79097 83.05434 82.62981 0.81472

TABLE II: Results Across All Datasets

Difficulty
Learner

Performance Metric
Level AUC PRC AMean GMean Acc

Easy

5-NN 0.98063 0.96839 96.97758 96.96472 0.96245
LR 0.96583 0.95016 94.11773 94.09769 0.93474

MLP 0.98008 0.97226 96.54759 96.53708 0.96083
NB 0.97575 0.94098 96.48057 96.47755 0.95911

SVM 0.97388 0.94424 95.75900 95.75078 0.93709

Moderate

5-NN 0.87070 0.83280 86.76235 86.51248 0.84761
LR 0.79066 0.66780 76.26144 75.92181 0.75130

MLP 0.87619 0.81727 85.17662 85.01985 0.84711
NB 0.85555 0.75677 81.69778 81.26672 0.76406

SVM 0.88422 0.81892 85.50385 85.38954 0.84532

Hard

5-NN 0.69309 0.61358 66.70353 65.52171 0.68258
LR 0.62565 0.55375 62.51941 61.72653 0.63791

MLP 0.69146 0.61595 67.25360 66.74453 0.67953
NB 0.68814 0.59895 67.93592 67.70315 0.68166

SVM 0.69765 0.60976 67.90017 66.74911 0.66174

TABLE III: Results by Difficulty Level

for each performance metric are printed in bold and italics,

respectively.

In Table II, we see the results across all nine datasets.

From this, it is apparent that 5-NN gives the best classifi-

cation performance for most of the performance metrics, but

SVM outperforms it when considering the AUC metric. This

demonstrates that the choice of metric can have an impact

on which model appears to perform best. On the other hand,

LR performs worst across all five performance metrics by a

sizable margin, suggesting that particularly bad models will

always give bad results.

Table III contains the results broken down by difficulty

level. Here, we see a wider range of results, with all learners

other than LR being the best choice for some combination

of difficulty level and performance metric. For the Easy and

Moderate datasets, we find that like the overall results, 5-

NN is usually the best performer, although only the Moderate

datasets match the overall results for all performance metrics.

For the Easy datasets, 5-NN is the best performer in terms of

AUC, but MLP is best in terms of PRC. The Hard datasets

show a great variety of results, with SVM and MLP being best

in terms of AUC and PRC respectively (somewhat similar to

the Moderate and Easy results, respectively), and NB being

best in terms of AMean and GMean. Only the Acc metric

shows 5-NN to be the best learner. This change suggests that

while 5-NN may work well on the less-challenging datasets,

for the most difficult problems it is not an appropriate learner.

The range of results found within the Hard datasets also serves

to underscore that with especially challenging datasets, minor

changes such as using a different performance metric can

have a larger impact on the relative performance of different

learners.
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Balance
Learner

Performance Metric
Level AUC PRC AMean GMean Acc

Balanced

5-NN 0.82676 0.79739 81.27990 81.09988 0.78366
LR 0.76873 0.72454 74.83803 74.43552 0.73897

MLP 0.81313 0.78115 80.01717 79.94562 0.78241
NB 0.78380 0.74007 76.74224 76.35319 0.70596

SVM 0.81571 0.78100 79.85680 79.30830 0.78647
5-NN 0.88350 0.88957 86.07606 85.81697 0.85685

Slightly LR 0.80186 0.78334 77.98195 77.62444 0.77370
Imbalanced MLP 0.88001 0.87674 85.30850 85.06847 0.84811

NB 0.88381 0.85767 85.31085 85.17344 0.84204
SVM 0.89231 0.87407 86.23430 86.07825 0.83826

Imbalanced

5-NN 0.83416 0.72781 83.08750 82.08206 0.85212
LR 0.81154 0.66383 80.07859 79.68606 0.81127

MLP 0.85459 0.74759 83.65213 83.28737 0.85695
NB 0.85183 0.69895 84.06118 83.92079 0.85684

SVM 0.84773 0.71785 83.07192 82.50287 0.81941

TABLE IV: Results by Balance Level

As for the worst learners, we find that much as with the

overall results, LR is almost always the worst choice regardless

of the difficulty level or the performance metric; only for one

combination (Easy datasets with the PRC metric) is it only

second-worst.

The results broken down by balance level, as presented

in Table IV, show a greater amount of diversity even than

the results broken down by difficulty. This may be because

Moderate datasets are still easy enough to learn that they

give consistent results across different performance metrics,

while Slightly Imbalanced datasets are too challenging to

provide consistent results. In any event, only one balance

level (the Balanced datasets) is consistent with the overall

results in favoring the 5-NN learner; even so, there is a

notable difference insofar as the odd performance metric out

is Acc (rather than AUC or PRC), with that metric favoring

the SVM learner. 5-NN and SVM also compete for the top

spots in the Slightly Imbalanced datasets, with SVM winning

for the AUC, AMean, and GMean metrics, and 5-NN giving

the best performance only in terms of PRC and Acc. SVM’s

performance for the two Mean-based metrics is especially

notable, because in the Hard datasets, those both gave the best

performance with NB. This trait is repeated for the Imbalanced

datasets, where NB is best for the AMean and GMean metrics

and MLP gives the best performance for the other three.

Overall, these results show that except when working with

the most balanced datasets, the optimal choice of learner will

depend on the choice of performance metric.

As with the earlier results, LR was almost always the worst

performing learner, only being the second-worst in one case

(Balanced datasets with Acc metric). It would appear that this

learner gives extremely poor results not just averaged across

all the datasets, but when either of the factors (difficulty or

balance level) are held constant. Thus, for this data we would

recommend almost any learner other than LR.

Finally, it is useful to observe how the different metrics

perform relative to one another, as the levels of balance and

difficulty are changed. For example, when looking at the Easy

datasets, all five metrics give relatively similar results. That

is, keeping in mind that the AMean and GMean measures

are 100 times larger than the others due to the way the

metrics are calculated, we find that values for all five metrics

are generally within 0.03 of one another. However, for the

Moderate and Hard datasets, the PRC metric is noticably

lower than the others (often around 0.08). While these metrics

measure different things, and thus it is not expected that they

will give the same values, it is useful to observe that PRC

is more affected by dataset difficulty than the other metrics.

PRC also has related behavior for the different balance levels,

showing values similar to the other metrics (within 0.04) when

considering the Balanced and Slightly Imbalanced datasets,

but dropping off a great deal (often more than 0.09) for

the Imbalanced datasets. This shows that when working with

imbalanced data, the PRC metric will generally give lower

values, which should be considered when trying to evaluate

how different techniques affect classification performance.

VI. CONCLUSION

Many bioinformatics datasets (and in particular, almost all

gene microarray datasets) have a very large number of features,

which requires the use of feature selection. However, little

work has considered filter-based subset selection techniques

such as CFS, which are able to discover small and non-

redundant feature subsets. Those works which do apply CFS

to bioinformatics datasets use a small collection of datasets,

and do not consider important dataset properties such as class

imbalance and difficulty of learning. To address this, we

considered the use of CFS to alleviate the problem of high

dimensionality across nine different gene microarray datasets,

which contain three levels of class imbalance and three levels

of difficulty of learning. We used five different learners to

build our classification models, and evaluated these models

using five different performance metrics. Thus, this work was

designed to appropriately showcase the effectiveness of models

built using CFS for feature selection.
We find that overall, and on the Easy, Moderate, and

Balanced datasets, the best learner is generally 5-NN, although

with the remaining three categories (Hard, Slightly Imbal-

anced, and Imbalanced), there is less consensus: SVM often

does well in terms of AUC, while NB is best in terms of

AMean and GMean, and MLP performs well at times. LR, on

the other hand, is almost always the worst learner, regardless

of the type of dataset considered. Finally, we find that the

PRC metric shows abnormal behavior compared to the other

five metrics, with its results dropping off between the Easy

and Moderate datasets, and between the Slightly Imbalanced

and Imbalanced datasets, to a much greater degree than the

other performance metrics.
Future work can consider an even larger collection of

datasets as well as potentially incorporate additional feature

selection approaches such as filter-based feature ranking and

wrapper-based subset evaluation.
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