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Abstract—Proteins are macromolecules that have a high
molecular weight, and make up, along with water, most of
the composition of cells. The functions they perform are ex-
tremely important, such as the catalysis of biochemical reactions,
cytoskeleton formation, and the transportation and storage of
substances. With the completion of genome sequencing, protein
discovery has been growing exponentially, and the laboratory
methods for determining their functions have not been able
to keep up with this growth. Due to this fact, it is necessary
to develop methods to aid in this function discovery process.
Thus, this work proposes a physical-chemical feature selection
methodology calculated by means of the structures that compose
the proteins. This stage has the goal of choosing a feature subset
from all available features. A feature is considered relevant if
it can be used by the machine to create a separation capability
between the different protein classes. To select this subset, we
proposed the use of a simple genetic algorithm. The results
obtained with the proposed methodology were superior to those
found in the literature, reaching a precision of 71% and a
sensitivity of 68%.

I. INTRODUCTION

The joint efforts of biology and computer science have
created a new field called bioinformatics. It consists in the
development of computational techniques that can infer and
derive important and relevant predictions from data acquired
by molecular biology [1].

Proteins are macromolecules that have high molecular
weights, and along with water make up most of the com-
position of a cell, thus being responsible for performing the
most important biological roles. Due do the large set of total
protein functions, knowing what a protein does is fundamental
to the development of many applications in biology [2]. Such
applications range from the development of new drugs for
treating illnesses to farming applications. After the completion
of human genome sequencing, the rate of known proteins
with unknown functions has been significantly increasing. The
laboratory methods for the discovery of protein functions, such
as x-ray diffraction, are costly and also very time-consuming,
and are thus unable to keep up with protein discovery. Hence
the need for computational techniques capable of helping in
the discovery of protein functions, consequentially reducing
the need for lab testing.

For this purpose, three approaches are commonly used.
The first approach makes the prediction according to primary

sequence similarity. This is a widely used approach due to
the large amount of discovered sequences. However, it fails
because the primary structure in the least preserved in the
evolutionary aspect of structures. This means that proteins can
have a high degree of similarity in their chains, but perform
completely different functions. The second approach is related
to the tertiary structure [3], which is far more preserved than
the primary structure. The function of a protein is directly
related to this structure. In spite of that, it has been observed
that structural similarities do not always correspond to catalytic
similarities. The third approach is based on the use of physical-
chemical characteristics to represent amino acids present in the
primary structure. They are calculated based on the interaction
of all structures of a protein [4] [5].

Borro et al. [6] and Dias [7] have used the features found in
Sting DB [8], one of the largest physical-chemical, structural
and biological protein feature databases. For the selection of
the best features, statistical resources and data mining methods
were used. However, it is not possible to guarantee that the fea-
tures selected by these techniques are the best possible feature
subset in the database. The goal of this work is to develop a
methodology that, based on a genetic algorithm (GA), is able to
select representative physical-chemical characteristics, given a
protein set. We intend to predict their functions using machine
learning. The learning technique of choice for the execution of
this work was Support Vector Machine (SVM), largely used
for solving similar problems [9] [10] [3] [11] [12]. It has
good generalization capabilities, as well as a well-established
theoretical foundation concerning mathematical and statistical
concepts.

The remainder of this article is structured as follows.
In Section II we detail the most relevant concepts used in
this work, which are fundamental to its comprehension. The
related work is described in Section III. Section IV details
the proposed methodology. Results are presented in Section
V. Finally, Section VI contains the conclusions and final
considerations.

II. BACKGROUND

A. Protein
The chemical reactions that take place within amino acids

form a protein, and determine its three-dimensional organiza-
tion. To understand the properties of a protein, it is necessary
to describe how the amino acids are formed. Their structure is
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composed by a central carbon atom, called alpha carbon, which
can be attached to four groups: the amine group (NH2), the
carboxyl group (COOH), a hydrogen atom or a chain called
the side-chain, which is where amino acids differ from each
other [13] [14] [1]. Proteins have four levels of organization: 1)
The Primary Structure is the sequence of amino acids along
its chain; 2) the Secondary Structure consists of the special
relationships among amino acids that are close to the primary
structure. In proteins, the basic secondary structure units are:
alpha helices and beta sheets; 3) the Tertiary Structure are the
way in which the atoms of a polypeptide chain are organized
in a three-dimensional space; 4) the Quaternary Structure are
the interactions between the many amino acid chains present
in a protein.

B. Support Vector Machine
Currently, there are many available machine learning tech-

niques. Among them, SVM, proposed by Vapnik [15] has
been standing out the most. Machine learning techniques
seek to minimize the probability of erroneously classifying
still-undiscovered patterns by means of a probability distri-
bution [16]. SVM maps the training samples into a higher-
dimensional space, assuming that for high dimensions in
space every problem becomes separable. From this premise,
it finds the support vectors on the margins of a hyperplane,
which distinguish different characteristics by maximizing the
distance between classes, reducing the problem to a decision
among classes. In Table I the main kernels used in the SVM
classifying process are presented. They have the goal of finding
the hyperplane that best separated the data. In this work
we used LibSvm [17], which is a library that uses support
vector machines in pattern classification and regression. It
supports many operating systems and has implementations in
different languages. It can also easily integrate with the WEKA
environment [18], which was also used in this work.

Table I. COMMONLY USED SVM KERNELS

Function Type Equation Parameters

Linear XT
i Xj -

Polynomial (γXT
i Xj + r)d r, d

Gaussian(RBF) exp(γ‖Xi −Xj‖2) γ
Sigmoid tanh(γXT

i Xj + r) γ, r

Source: Hsu et al. [17]

C. Feature Selection
Feature selection is an important preprocessing step, be-

cause attributes that will serve as inputs to the learning
algorithm are derived from it. The stage has the goal of
choosing an attribute subset from all available attributes. An
attribute is deemed relevant if the machine can use it to create
a separation capacity between the different classes. Among the
algorithms used for feature selection, we can cite exponential
algorithms, which perform an exhaustive search in the solution
set to determine the best possible solution. This is not a viable
method, because computational time increases exponentially.
Another technique is sequential selection, such as forward
selection and backward elimination [19]. Its disadvantage is
disregarding interactions between characteristics. Two evolu-
tionary algorithms are part of the random search methods:
genetic algorithms [20] and particle swarm optimization (PSO)
[21]. The advantage of randomized algorithms in comparison

with sequential methods is that the former consider character-
istic interactions, and the latter do not.

D. Genetic Algorithm
The genetic algorithm (GA), initially proposed by Holland

[22], is based on Darwin’s theory of evolution and belongs to
the evolutionary algorithms group. These algorithms start from
an initial population, in which an individual is associated to a
potential solution in the global solution set. Each individual
has a fitness value, which determines how well-adapted to
its environment such individual is, as well as its chances of
survival. After a fitness-based selection process, the individuals
chosen to remain in the population are then recombined using
the crossover and mutation genetic operators. From then on
the process repeats itself, hoping to obtain increasingly better
fitness results for each generated population. The use of GA is
highly justifiable for the problem proposed in this work due to
its ability to generate representative samples from the solution
set after few iterations.

III. RELATED WORK

Dobson and Doig [23] have proposed a methodology for
enzyme prediction using their structural data. Their method
aims to classify the enzymes into one of six superfamilies,
based on a group of the protein’s structural attributes. The
average precision value for the analyzed classes was 35%,
using SVM.

Borro et al. [6] used the parameter selection process to
increase the precision of their protein classification model.
In order to select the best parameters, they used statistical
and data mining resources, such as data correlation analysis
and association rule mining. The Discrete Cosine Transform
(DCT) was used to circumvent the size problem for the feature
vectors, used as input in the classifier. Another problem was
the imbalance of the used classes, since the largest class had
161 proteins and the smallest class had only 18. The sampling
with replacement statistical resource was used to try and solve
this problem. With the proposed methodology, precision levels
of about 53,9% were obtained, using Bayesian networks.

Dias [7] used SVM in the prediction of protein functions.
To represent the protein’s amino acids, physical-chemical
characteristics contained in Sting DB were used, as previously
done in [6]. Along with these characteristics, data from GO
(Gene Onthology) were also used. To extract relevant features
from the proteins that were used as inputs in the neural
network, DCT was used. After this stage, twenty-three local
binary classifiers were created, able to confirm or refute a
specific function. Afterwards, a global classifier that gathers
all predetermined functions was created. With the employed
methodology, precision levels of 98% and sensitivity levels of
93% were obtained.

Huang and Wang [20] proposed the use of a genetic
algorithm to simultaneously optimize feature selection and the
parameters for the SVM kernel. For this purpose they used an
evaluation function based on SVM accuracy. The experiments
were conducted with 11 databases, available in the University
of California, Irvine (UCI) repository. It is noteworthy that
none of the database used belong to the context of prediction of
protein function. Finally, the authors compared their parameter
optimization solution with Grid Search, a method commonly
used in the literature for this purpose. The proposed approach
was able to significantly improve accuracy, but on the other
hand its processing time is considerably larger.
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IV. METHODOLOGY

One of the main difficulties in the protein classification
process is determining how amino acids will be coded, since
SVM does not accept nominal variables. This methodology has
the goal of determining by means of a genetic algorithm which
characteristics are the most suitable for enzyme classification
in their respective classes. Figure 1 shows a flowchart of the
proposed algorithm, and the following subsections describe its
stages.

A. Database and Feature Extraction
The protein set used in this work was the same one

used by Dobson [23] e Borro et al. [6]. This set was used
so that results from our work can be accurately compared
to theirs. Proteins were extracted from Protein Data Bank
(PDB) [24], the largest and most complete protein repository
in existence. Table II presents the amount of enzymes used in
this work. Enzymes are catalyst proteins, that is, they accelerate
the rate of biochemical reactions. The International Union of
Biochemistry and Molecular Biology (IUBMB) developed a
classification system that divides enzymes in six classes, which
can be also seen in Table II.

Table II. ENZYME CLASSES WITH THEIR RESPECTIVE FUNCTIONS

EC Class Function Amount
1 Oxidoreductase Electron transfer reactions 76
2 Transferases Group transfer between

two molecules
120

3 Hydrolases Hydrolysis reactions of
many covalent bonds

161

4 Lyases Breaking of covalent
bonds and removal of
water, ammonia and
carbon gas molecules

60

5 Isomerases Modification of a single
molecule, without parti-
tioning another

57

6 Ligases Reactions of new
molecule formation
by joining two other
molecules

18

Sting DB, put together by the Computational Biology
laboratory of Embrapa Brazil, has a varied set of features
extracted from all the structures that compose a protein. In this
work we used 338 features from one of the modules included
in this repository, called Java Protein Dossier [25]. Features
extracted from Sting DB can be grouped in:

• Evolutionary features are calculated from changes
in proteins, that is, how much their sequences have
evolved along time.

• Interatomic contacts are calculated from the contact
between atoms present in each residue of a protein.

• Physical-chemical features are obtained from attrac-
tions exerted by the many types of connections be-
tween amino acids.

• Geometrical structures are calculated from the three-
dimensional structure of the protein.

• Surface features are calculated from cavities in the
surface of a protein to which ligands bind themselves.

B. Chromosome design
In a GA, an individual represents a possible solution to the

problem in question, so it is necessary to find the best way
to represent them. In Figure 2, we present an example of an
individual used in the algorithm we propose. This individual
is represented by a vector composed by 11 integer variables,
where f can receive values from 1 to N, where N is the number
of features contained in the database. Each of the values that
compose the vector represents a feature found in the files
extracted from Sting DB. Among the 338 features available
in the database, only 11 were considered, once we compare
our study with the one proposed by Borro et al, which used
this amount.

Figure 2. Chromosome design

C. Normalization
Before the SVM training process, some additional stages

are necessary for the preprocessing of selected features. Data
normalization has the goal of avoiding the prevalence of
attributes with bigger interval values over those with smaller
interval values. Another purpose of data normalization is
to avoid great difficulties during the numerical calculations
carried out by the kernel chosen for the SVM. Each feature
is normalized, where X is the original value of the feature,
and max and min are the largest and smallest value of the
aforementioned feature, respectively.

X ′ =
X −max

max−min
(1)

D. Discrete Cosine Transform
Proteins have different amounts of amino acids, so if amino

acids were coded sequentially, the SVM input vectors would
have different sizes. Thus, it is necessary to use some technique
to circumvent this situation, because SVM only accepts feature
vectors of equal dimension. To solve the dimension problem,
we used DCT [26], whose formula is presented in Equation
2. DCT is a feature extraction technique that transforms data
in the time domain into data in the frequency domain. In
this process, frequencies are sorted in descending order, where
the first frequencies are the ones that store the most relevant
information from the data set. High frequencies are considered
to be noise.

Ck = αk

N−1∑
n=0

Xn cos

[
π

N

(
n+

1

2

)
k

]
, n > 0 (2)

where αk = 1√
N
for, k = 0 e αk =

√
2
N for, k = 1...N

E. Selection of low-frequency coefficients
To select the best amount of coefficients to represent the

protein, we carried out experiments with the same characteris-
tics used by Borro et al. [6] and Dias [7]. It can be observed in
Figure 3 that precision rates increase as the amount of selected
coefficients increases; conversely, sensitivity rates decrease.
Since both metrics are important, it was necessary to choose
a coefficient amount that was able to yield the best balance
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Figure 1. Proposed Methodology

between them. Therefore, the chosen coefficient amount was
75.

Figure 3. Average precision and sensitivity per number of selected coefficients

F. Fitness function
The fitness function determines how adequate a solution is

for solving a problem. In this work the goal was maximizing
the average hit rate of protein classification. To achieve this, we
used the cross-validation process and the grid search heuristic.

The most used kernel, which is also the default kernel
for the LibSvm library, is RBF (Radial Basic Function).
With it, it is possible to solve multi-class problems, through
mapping features into a space of higher dimensions. RBF has a
parameter that can be varied to obtain better learning rates for
the classifier. The γ (gamma) parameter has the goal of finding
the Gaussian curve that best separates the instances. Another
parameter to be adjusted is C (cost), which is common to all
kernels. It determines the penalty for the function, a type of
tolerance to errors inherent to a classification problem.

1) Grid Search: Grid search seeks to optimize the clas-
sification through the execution of SVM and enables results
obtained with the parameter adjustments to be analyzed, testing
exponential sequences for them.

2) Cross Validation: In this work, the parameter optimiza-
tion process was used along with cross-validation, which is
a statistical technique for partitioning the test and training
sets. To partition the sets, we used k = 10. With this, the
base is divided into k subsets, where k − 1 subsets are used
in the model construction process, during which training is
conducted, and the remaining subset is used for validating.
This process is repeated k times, and each time a different
test set is used. This way, the technique seeks to optimize
machine learning so it can learn as much as possible in order
to generalize the model and thus predict the behavior of data
for future inputs.

G. Genetic Operators
An important part in assuring the efficacy of an AG is

the adequate choice of mutation and crossover operators. With
the changes in encoding or for specific problem types, the
traditional operators are ineffective.

1) Selection: The chosen selection method was Tourna-
ment. In it, k individuals compete for their permanence in
the population, with the individual possessing the best fitness
value gaining the right to stay in the population.

2) Crossover: Due to encoding restrictions, it was neces-
sary to use a special type of crossover, called Partially Mapped
Crossover (PMX) [27] [28]. It consists of a two-point crossover
where values are mapped to assure there are no repetitions
between the variables of an individual. Variable repetition
during the selection process is completely undesirable, since
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the duplication or repetition of a feature adds no value to the
classification process. The chosen crossover rate was 0.65.

3) Mutation: In the proposed algorithm, simple mutation
was used. In it, some individuals are randomly chosen and their
variables are randomly altered. This operator has the goal of
maintaining population variability. A mutation rate of 0.01 was
used.

4) Elitism: Elitism has the goal of keeping the best solution
produced in each generation. By using it, we assure that the
most fit individuals will always participate in the production
of new population members.

H. Solution
When the algorithm terminates, a feature subset is obtained.

They are the features that enabled the individual to be best
adapted to its environment, that is, that yielded the best
accuracy in the classification process.

I. Performance Measurements
To evaluate the best feature set obtained with the proposed

methodology, three metrics were used: Accuracy, Precision and
Sensitivity. To understand these metrics, the following concepts
are fundamental: True Positive (TP): the amount of proteins
that were correctly classified to the class in question;False
Positive (FP): the amount of proteins that did not belong to the
given class, but were classified as part of the class;False Neg-
ative (FN): the amount of proteins in the analyzed class that
were wrongfully classified; True Negative (TN): the amount
of proteins belonging to other classes, classified to the class
in question.

• Accuracy is the rate of test instances correctly clas-
sified by the classifier

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

• Precision is the rate of instances classified to a class
that actually belonged to said class

Precision =
TP

TP + FP
(4)

• Sensitivity is the rate of class instances that were
actually classified as belonging to said class.

Sensitivity =
TP

TP + FN
(5)

• F-Measure is the harmonic mean between precision
and sensitivity

F −Measure =
2TP

2TP + FP + FN
(6)

V. RESULTS AND DISCUSSION

This section has the goal of presenting the results given
with the proposed methodology. The results were compared
with Borro et al. [6] due to the fact of the results present in
other related works were insufficient to realize the necessary
comparisons. For instance, Dobson and Doig [23] presented
only the rate of accuracy. It is also important to highlight the
results given by Borro et al. which were better than the other
results found in related works. Borro et al. used the same the
database that was used in the present work.

During the experiments, 7 executions of the genetic algo-
rithm were carried out in order to try and find the best feature

set. The number of generations and individuals was limited to
50 and 10, respectively. This limitation is due to the fact that
the time required to run the algorithm increases significantly
as these parameters are increased. After the completion of the
executions, the feature set with the best accuracy was selected.
The SVM parameters selected by grid search for this feature
set were C = 32.0 and γ = 4.8828125E-4.

The features selected by the GA are described below:

• 3DEntropyINT(8) number of residues in the same
chain used to calculate the relative entropy, then
divided by the volume of the sphere.

• 3DEntropyLHAsw(9,7) entropy relative to amino
acids found in the domain of radius equal to 7, and
using a sliding window with 9 residues.

• ACCC residue solvent accessibility calculated with
joined proteins.

• ACCI residue solvent accessibility calculated for each
isolated protein.

• ContactsEnergyAllsw(true,3) average energy for all
residue contacts and 2 of its neighbors, also consider-
ing contacts with water molecules.

• Curvature average residue curvature in protein com-
plexes.

• DensityCAsw(3,6) density calculated with the sphere
centered in Cα, radius equal to 6, using a sliding
window with 3 residues.

• DensityCAsw(3,6) density calculated with the sphere
centered in Cα, radius equal to 4, using a sliding
window with 5 residues.

• DensityCAsw(3,6) density calculated with the sphere
centered in Cα, radius equal to 5, using a sliding
window with 9 residues.

• DensityLHAsw(3,4) density calculated with the sphere
centered in the LHA (last atom in the side chain except
Hydrogen atoms), radius equal to 4, using a sliding
window with 3 residues.

• DistanceCG represents the distance between the Cα
of each residue and the center of mass of the chain
(barycenter).

Table III presents the precision and sensitivity obtained for
each class and the average for all classes, using the features
selected by the genetic algorithm. Aiming to improve the
predictions and to compare them with other methodologies
proposed in the literature, we added the amino acid frequency
for each protein to the feature vector. The results of such
addition are also shown in Table III. It can be observed that
the insertion of the frequency caused average precision and
sensitivity levels to be improved by 1% and 6% respectively.

Table III. RESULTS WITHOUT AND WITH ADDING AMINO ACID

FREQUENCIES

Without Frequency With Frequency
Precision Sensitivity Precision Sensitivity

Oxidoreductase 0.68 0.58 0.74 0.66
Transferases 0.60 0.66 0.62 0.73
Hydrolases 0.65 0.76 0.77 0.76
Lyases 0.73 0.55 0.62 0.60
Isomerases 0.75 0.67 0.76 0.70
Ligases 0.82 0.50 0.79 0.61
Mean 0.70 0.62 0.71 0.68
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The results for the evaluated metrics were obtained from
data contained in the Confusion Matrix, shown in Table IV.
The matrix represents the number of correct classifications
overlapped with the number of predicted classifications for
each class. By analyzing the confusion matrix, we can observe
that some instances were classified into different classes. A
possible explanation is due to the imbalance between classes.
Most of the false positives occurred for the two predominant
classes, which are Hydrolases and Transferases, respectively.

Table IV. CONFUSION MATRIX

Real Classes
Classes assigned by the classifier

Oxi Tra Hyd Lya Iso Lig
Oxidoreductase (Oxi) 50 9 11 1 4 1
Transferases (Tra) 6 87 13 10 3 1
Hydrolases (Hyd) 5 26 122 6 1 1
Lyases (Lya) 1 14 7 36 2 0
Isomerases (Iso) 6 3 5 3 40 0
Ligases (Lig) 0 1 1 2 3 11

Table V presents the results obtained for the metric pre-
sented in the ”Performance Measure” subsection. The average
sensitivity rate was 68%. Again, a possible explanation for
this fact is the imbalance between classes. Instances tend to
be classified into the prevailing classes, due to the large number
of samples from these classes the classifier used to learn from.

Table V. METRICS USED FOR THE EVALUATION OF THE BEST SET

Precision Sensitivity Accuracy F-measure
Oxidoreductase 0.74 0.66 0.71 0.69
Transferases 0.62 0.73 0.64 0.67
Hydrolases 0.77 0.76 0.76 0.76
Lyases 0.62 0.60 0.62 0.61
Isomerases 0.76 0.70 0.74 0.73
Ligases 0.79 0.61 0.72 0.69
Mean 0.71 0.68 0.70 0.69

The average obtained precision was 71%, most of which
coming from the Ligase class. This happened because, among
the 14 instances classified into this class, 11 were correctly
classified. The classes with smallest precision rates were Trans-
ferase and Lyase, with a precision rate of 62%. For Transferase,
only 87 of the 140 instances classified into the class actually
belonged to it. For Lyases, the 62% precision rates can be
attributed to the significant number of instances from the
prevailing classes mistakenly classified as being Lyases. This
can, once more, be attributed to the imbalance between classes.
Since the number of instances of the Lyase class given to
the classifier was smaller, it was not able to learn enough to
distinguish Lyases from other prevailing classes. Concerning
accuracy, we obtained an average rate of 70%.

Figure 4 presents a comparison of the precision obtained
with the proposed methodology and the methodology used by
Borro et al. [6]. It can be seen that the proposed methodology
was able to substantially improve upon average precision, with
an increase of 17.5%.

In Figure 5 we present a comparison of the sensitivity
metric obtained by each methodology. An improvement of
22,1% was obtained using the features selected by our pro-
posed methodology.

In Figure 6 the comparison results for the F-measure metric
are displayed. The results for the features identified by our

proposed methodology were the best for all classes. An average
improvement of 22.8% in comparison with the methodology
by Borro et al. [6] was obtained.

Figure 4. Precisions obtained by the proposed methodology and by Borro et
al. (2006)

Figure 5. Sensitivity obtained by the proposed methodology and by Borro
et al. (2006)

Figure 6. F-measure obtained by the proposed methodology and by Borro
et al. (2006)
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VI. CONCLUSION

As future work, we propose the development of a parallel
and distributed GA. Such a GA would enable us to increase
the solution space encompassed by the GA. The parallelism
also would allow tests with different parameter used in the GA
and an analyse more detail about this parameters. Thus, also
would be possible to compare the feature selection and with
no feature selection, testing effectiveness of the methodology
proposed in this paper. Another important issue is the fitness
function for the GA. In this work we sought to maximize only
accuracy, which is why a simple GA implementation was able
to fulfill our needs. It is desirable to also maximize sensitivity
and precision in addition to accuracy. To accomplish this goal,
a multi-objective GA can be used, in which it is possible to
perform more than one optimization simultaneously.
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