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Abstract—Recently there has been renewed interest in the
application of photoplethysmography signals for cardiovascular
disease assessment. Photoplethysmography signals are acquired
non-invasively using visible and infrared light passed through
the finger pulp. Unfortunately, this method commonly suffers
from many forms of interference and distortion such as; baseline
wander, mains-line interference and random spikes or other such
artifacts. This paper presents a new approach for effective filter-
ing of the photoplethysmography signal. Specifically, a cascaded
filtering method for removing the artifacts from photoplethys-
mography signals based on the median and polynomial filters
(MdPF) is proposed. Recordings from the PhysioNet database are
used to validate the proposed method. Our experimental results
show that the performance of MdPF cascaded filtering method
is more effective than other current methods alone in removing
artifacts from photoplethysmography signals. Root mean square
error measurements are used for comparison purposes. This
paper follows from previous work on median based method for
baseline wander removal in photoplethysmogram signals.

Keywords—photoplethysmography, cardiovascular disease, data
acquisition, pre-processing

I. INTRODUCTION

It has been shown recently that the photoplethysmography
(PPG) signal [1] is used to obtain clinical information for
the early diagnosis of cardiovascular disease (CVD). However,
like most physiological signals, PPG waveforms are difficult to
acquire without encountering some forms of interference and
distortion. Preprocessing of physiological data is an important
part of this research since the noise and artifact contamination
of the PPG signal can affect the efficient interpretation of
clinical information and early diagnosis of disease. The main
challenges in processing the PPG signals are described as
follows [2]: power line interference is clearly displayed within
the frequency domain as a spike at a frequency of 50Hz or
(60Hz in USA) caused by mains power sources and can be
eliminated by one-stage median filter (1SMdF). The power-
line interference noise is generated by using a cosine wave as
displayed in Fig. 1(a). The frequency of cosine wave is 50Hz
whereas the corresponding amplitude is 170mV. The patient -
sensor motion also induced by muscular noise is usually due to
the movement of the patient or sensor and can be eliminated
by ensuring that the patient lies relaxed and the sensors are
properly connected. Baseline wander artifacts usually originate
from respiration at frequencies varied between 0.15 and 0.5Hz
[3] and can be suppressed by using two-stage median filtering
(2SMdF) [4]. An artificial baseline wander is generated by
using a combination of sine and cosine waves as displayed in
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Fig. 1(b). The frequencies of the sine and cosine waves are
0.4Hz and 0.2Hz respectively, whereas their corresponding
amplitudes are 120mV and 240mV.
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Fig. 1: Signal types (a) 50Hz interference signal (b) Baseline wander
signal (c) Spike signal (d) Random signal.

Wide band noise (spikes and low-frequency noise) could
also be caused by complex stochastic processes within a wide
band signal. This artifact could be due to instrumentation
amplifiers, the recording system picking up ambient electro-
magnetic interference and can be removed by one-stage median
and polynomial filters. Therefore, the spikes and random noise
are common forms of interference to photoplethysmography
signal as displayed in Fig. 1(c) and Fig. 1(d) respectively.
The spikes are generated by adding transients with random
signs at random points. We created random noise using Matlab
“randn” function with zero mean and standard deviation of
variable values. In this experiment, the sampling frequency
(sampling rate) is 125Hz.
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Fig. 2: PPG signal pre-processing.

II. DATA COLLECTION AND PRE-PROCESSING OF PPG
SIGNALS

At the initial stage, PPG data were extracted online from
PhysioNet MIMIC II databases [5] which were imported into
Matlab for additional processing as expressed in (1,2,3). The
length of the extracted PPG signals was 10 seconds and
originally sampled; however the time was arbitrarily scaled.
In order to cascade each stage in Fig. 2, the best - quality
simulation output of the primary stage becomes the input of
the next stage, and so on as described in Fig. 3. On the first
stage, the one-stage median filter was applied (1SMdF). The
second stage is a polynomial-based smoothing filter; which we
will refer to as poly. In the final stage, we applied the two-
stage median filters (2SMdF) [3] and then mean removal. As
a comparison with the Matlab filtering method, median filter
(Medfilt1) is used in the first stage. Where high pass window-
based finite impulse response filter method (Fir1) or Wavelet
denoising based on symmetric wavelets was in the second
stage, we applied two-stages, moving average filter (2SMaF)
[3] in final stage and then mean removal. As expressed in (4),
the cascaded transfer function H(z) is written as a product of
each stage transferred functions.
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Fig. 3: Block diagram of the cascaded filters algorithm for pre-
processing of PPG signals.

The ordering of the individual Hi(z)s will lead to a
system with completely different numerical characteristics. To
determine, which give the best numerical characteristics, it may
be effective to try various orderings for a given set of Hi(z)s
where i = 1, 2, 3.

Q(n) = P (n) + U(n) (1)

K1 =
1

N

N∑
n=1

Qn (2)

X(n) = Q(n)−K1 (3)

H(z) =
Y (n)

X(n)
= H1(z).H2(z).H3(z) (4)

As shown in Fig. 2, where P (n) is a clean PPG original
signal contained in P 1 through PN, and (P + U)n is a
corrupted PPG signal. Additionally, X(n) is the output after
mean removal (DC offset) and so input to cascaded filters
whereas n is an index that runs through these values. In
cascaded filters, the structure of 1SMdF can be represented
as,

y(n1) = { Median(X(:, n), 2) X1(:, j)

f(X1(:, j)) = { y(n1) ∀j ∈ {1, ...N} (5)

Where n = max(j − floor(L/2), 1) : min(j + floor
(L/2), N), X is a noisy PPG data. Additionally, L is
averaging window length in samples, N is a dimensional
size. Meanwhile, X1(:, j) is the output after spikes and 50Hz
removal whereas j is an index that runs through these values.
In cascaded filters, the structure of smoothing algorithm can
be represented as,

f(y(n2)s) =

n∑
i=n

Aiy(n2)s + i

n∑
i=n

Ai

(6)

This showed that a set of integers (A[−n], A[−(n− 1)].....
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...., A[n− 1], A[n]) could be derived and used as weighting
coefficients to carry out the smoothing operation. The use of
these weighting coefficients known as convolution integers, is
the smoothed data point y(n2)s. In cascaded filters; the structure
of 2SMdF can be represented as,

y(n3) =

{
Median(X(:, n1), 2) X1(:, j)

Median(X1(:, n2), 2) X2(:, j)

f(X2(:, j)) = { y(n3) ∀j ∈ {1, ...N} (7)

Where n1 = max(j − floor(L1/2), 1) : min(j + floor
(L1/2), N) and n2 = max(j − floor(L2/2), 1) : min(j+
floor(L2/2), N), X is a noisy PPG data. Additionally, L1
and L2 are first and second stages averaging window length
in samples, respectively, N is a dimensional size. Finally,
X2(:, j) is the output after baseline wander removal whereas
j is an index that runs through these values. Therefore, after
mean removal as expressed in (8), Y (n) is a filtered PPG
signal as expressed in (9).

K2 =
1

N

N∑
j=1

X2(:, j) (8)

Y (n) = X2(:, j)−K2 (9)

III. METHOD AND EXPERIMENT RESULTS

The PPG data extracted from PhysioNet database [5] is
first filtered before yielding a prototype clean signal; we refer
to as a PPG original signal in Fig. 4(a). Typically, data can
exhibit unwanted noise and distortion that last for a short
duration of time. Thereby, we have corrupted the PPG original
signal with measured amounts of DC offset, 50Hz frequency,
baseline wander, random noise and several large spikes over
the length and then mean removal as expressed in (3) to
generate the PPG test signal in Fig. 4(c). The PPG test signal
is verified by applying three stages of filtration to extract a
suitably clean signal. Individual experiments on each stage
are carried out separately as described in Fig. 5, 6 and 7. As
expressed in (10), root mean square error (RMSE) is used
in order to quantify the noise level. The lower RMSE value,
the better quality of the signal. RMSE can be defined as the
square root of the mean of the square error. In addition, we
evaluate performance results using the Fast Fourier Transform
(FFT) for comparison with RMSE. The statistical analysis
and comparison results are shown in Table 1 and Fig. 8,
respectively.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (10)

Where yi is the value actually observed, ŷi is the value
predicted.
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Fig. 4: Signal types (a) PPG original signal (b) FFT PPG original
signal (a) PPG test signal (b) FFT PPG test signal.

A. First Stage of Cascaded Filters
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Fig. 5: Simulation results (a) 1SMdF (b) FFT 1SMdF (c) Medfilt1
(d) FFT Medfilt1.
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B. Second Stage of Cascaded Filters
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Fig. 6: Simulation results (a) Poly (b) FFT Poly (c) Fir1 (d) FFT Fir1
(e) Wavelet (f) FFT Wavelet.

IV. CONCLUSION

This paper shows the advantages of cascaded filters that can
be implemented in various ways. In this paper, the simulation
results, FFT and RMSE measures indicate clearly that our cas-
caded filtering can give superior performance on the removal
of artifacts in PPG signals. By cascading filters with different
responses, it is possible to allow for various interference
signals. We have evaluated our cascade with 10 extracted PPG
data sequences drawn from the PhysioNet database and have
obtained positive results in each case. To further increase the
performance, it may be effective to examine different ordering
of four filters. Future work will involve outlier removal and
feature extraction from the PPG signals and data from various
patients will be analyzed for CVD risk.
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FFT 2TSMaF.
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