
  

  

Abstract— Wilms tumor, or nephroblastoma, is a cancer of 
the kidneys that typically occurs in children and rarely in 
adults. Around 10% of Wilms tumor patients are diagnosed 
having a concurrent syndrome that enhances the risk of Wilms 
tumor. A screening method for early detection of Wilms tumor 
in these patients would be beneficial, since the size or stage of a 
tumor is related to outcome. We introduce a miRNA pathway 
analysis methodology that takes into account the topology and 
regulation mechanisms of the gene regulatory networks and 
identify disrupted sub-paths in known pathways, using miRNA 
expressions. The methodology was applied on a miRNA-
expression study and a predictive model was developed, using 
machine-learning (decision-tree induction) approaches. The 
model is able to identify putative mechanisms that underlie and 
govern the Wilms tumor phenotype, and discriminate between 
diseased and healthy subjects. Initial experimental results are 
promising and in line with the relevant biomedical literature. 
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I. INTRODUCTION 
icroRNAs (miRNAs) are endogenous molecules 
����������	 �
���	 �� nucleotides that can play an 

important regulatory role in animals and plants by targeting 
messenger RNAs (mRNAs) for cleavage or translational 
repression[1]. miRNA research has revealed multiple roles 
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in negative regulation [2] (transcript degradation and 
sequestering, translational suppression) and possible 
involvement in positive regulation (transcriptional and 
translational activation). A miRNA controls gene expression 
post-transcriptionally either via the degradation of target 
mRNAs or the inhibition of protein translation. Using high-
throughput profiling, dysregulation of miRNAs has been 
widely observed in different stages of cancer [3, 4]. The up-
regulation (overexpression) of specific miRNAs could lead 
to the repression of tumor suppressor gene-expression, and 
conversely the down-regulation of specific miRNAs could 
result in an increase of oncogene expression; both these 
situations induce subsequent malignant effects on cell 
proliferation, differentiation, and apoptosis that lead to 
tumor growth and progress [5, 6]. Since their discovery, 
miRNAs are recognized as crucial regulators of gene-
expression that regulate a range of processes [7]. Nowadays, 
it is evident that miRNAs regulate diverse cellular pathways 
and are widely believed to regulate most biological 
processes [8, 9, 10]. As Chen et al [5] state, miRNAs play 
key roles in human cancer; identifying the underlying 
pathways will provide a more complete understanding of 
their functions and regulations during cancer progression, 
and may have clinical applications in the future. 

The activation of miRNAs can result in the post-
transcriptional down-regulation or up-regulation of the 
expression of certain genes [11], which subsequently affect 
other genes downstream in pathways or biological processes. 
Given such knowledge, a clinical question appears: “Can we 
use the disrupted by miRNAs sub-paths to train a predictive 
model, and utilize this knowledge in biomedical research 
and clinical practice?” For a patient such knowledge is 
critical since, the treating physician may proactively select 
targeted drugs for his/her treatment. Figure 1 shows an 
indicative example where, the overexpressed miRNAs (in 
green, Figure 1, part A) target specific genes (in blue, Figure 
1, part B) and disrupted the MAPK signaling path (targeted 
down-regulated genes in blue, Figure 1, part C). 
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Figure 1: From miRNAs to disrupted sub-paths
(green) miRNAs, part B targeted genes in blue and
green, part C functional sub-paths in green and dis
blue 
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Figure 2: The identification of disrupted by miRNA
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Figure 3: Decomposition of GRNs in MinePath (art
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Even though the decision tree model did
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Figure 5: The PLC��PKC�MEKK disrupted su
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Figure 6: The PDK1�AKT�CREB disrupted su
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B signaling pathway. 
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might help to find targeted therapies for individual patients. 
In one child with relapse of a bilateral nephroblastomatosis 
and disrupted retinoic acid pathway the treatment with 
retinoic acid did cure the child without tumor surgery [34]. If 
it can be shown that this pathway analysis tool is beneficial 
for Wilms tumor it can serve as a proof of principle for 
usage in other cancer. From a technological point of view a 
translation in other cancer domains is easy as it is only 
necessary to link the tool with the corresponding database of 
patient specific miRNAs in other cancer domains. 
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