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Abstract—This paper is motivated by a DNA microarray
data obtained from a genome-wide mutation library for the
bacterium Yersinia Pestis. The purpose of this study is to identify
essential genes for the bacterium Yersinia Pestis. The data set
contains more than four thousands genes and each gene has
different number of observations with unequal number of probe
observations. We propose a feature selection method for the
representing three probes and a new gene level adjusted multiple
statistical test to handle the problem of unequal number of
observations. The proposed method is compared with two other
methods based on Behrens-Fisher method and Hotelling t-square
method. Our results show that our proposed method is more
suitable among the three for identifying essential genes using the
DNA microarray data.

Keywords—Microarray; genome-wide mutagenesis; gene-level
adjusted multiple t-test; number of probes; essential genes; Yersinia
pestis.

I. INTRODUCTION

DNA microarray technology is a powerful approach for
genomic research due to its ability to detect and compare the
abundance of tens of thousands genes and their RNA products
in parallel. As expected for such high throughput analysis,
microarray data are characterized with high dimensions and
small sample sizes. Making statistical inference for such
high dimensional data structures has been challenging. It is
important to develop new statistical methods, especially those
suitable for analyzing specialized microarray data.

Traditionally, microarray technology has been mainly used
to analyze gene expression profiles. Massive amount of data is
available to provide valuable information about gene functions,
inter-gene dependencies and underlying biological processes,
and opens a new avenue for discovering gene co-regulations,
gene interactions, metabolic pathways and gene-environment
interactions. Several data-mining methodologies, such as clus-
tering analysis and classification techniques, have already been
widely used to analyze gene expression data for identifying
groups of genes sharing similar expression profiles. Variations
of microarrays have been used for many other purposes, and
methods for statistical analysis for these varied forms require
customization and design that would better serve the specific
need of the particular projects.

In this work, we have applied a custom high density
oligonucleotide array to identify essential genes in the bacterial
pathogen Yersinia pestis. Such genes may be potential targets
for developing novel antibiotics. The experimental approach

Fig. 1. Outline of Yersinia pestis project

is described in Figure 1. Briefly, a mutant library of Yersinia
pestis KIM5 was constructed by transposon mutagenesis so
that each of the more 4, 000 genes was disrupted about 20
times in average by independent transposon insertions. After
growing a limited number of generations, the mutants that have
inactivated essential genes will be depleted in the library, and
the abundance of the corresponding transposon sequences in-
terrupting essential genes will be much lower than that of those
interrupting non-essential genes. Probes containing transposon-
inserted sequences prepared from this library were labeled
with Cy3 (colored green, G) and were used to hybridize a
genome-tiling microarray containing 40-nucleotide oligomers.
Probes prepared from the wild type were labeled with Cy5
(colored red, R) and were used as control. Therefore, after
hybridization, the color on array spots would demonstrate
a normal ratio of R/G for the oligonucleotides representing
non-essential genes, and a greater ratio of R/G for those
oligonucleotides of essential genes. One common observation
is that the distribution of R/G is skewed to the right. We
suggest a transformation of the R/G ratio by logarithmic base
two. The advantage of this transformation is that it produces
a continuous spectrum of values for differentially survived
genes.
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Because of the nature of the experimental approach, it is
difficult to report gene essentiality based on simple R/G ratio
analysis. First, the mutant library may contain mutants that
survive at various levels, making no clear cut in the abundance
of transposon in essential genes vs. in non-essential genes.
Second, probe preparation was based on PCR amplification
on total genomic DNA which may result in the presence of
a large quantity of nonspecific products and hence nonspe-
cific signals on the DNA microarray. Third, the probes were
generated using restriction fragments of genomic DNA that
may sometimes cover intergenic sequences next to the essential
genes, producing false negative results. Fourth, each probe may
cover one or more oligonucleotides on the array, and each gene
may cover one or more probes, making gene identification
highly complicated. A good method for data analysis would
have to take into consideration of these factors and is able to
deal with the dirtiness of the data.

Early analysis of microarray data relied on the fold change
cut-offs to identify essential genes. Typically a two-fold change
is taken as the cut-off. That is, if a gene has R/G greater than 2,
then the gene is said to have differentially expressed. Shena et
al. (1995) used a spiked control in mRNA samples to normalize
the signals for the two fluorescent dyes and declared a gene
as differentially expressed if the difference of the expression
levels is more than 5 in two mRNA samples. In our work,
one of the issues is that genes are covered by one or more
probes and each of the probes are hybridized to one or more
microarray spots, raising a problem about the efficiency of
analysis. The varied lengths of genes cause varied number
of observations among the genes. Hence representative spots
selection became one of the major issues before conducting
formal statistical analysis. Though Antipova et al. (2002)
suggested a way to reduce probes for genes, it is not suitable
for our data set.

To overcome the complicated data features mentioned
above, we grouped the data according to the probe fragmenta-
tion and identified 3229 genes, each contains at least one probe
covering only the gene under study but not intergenic regions
or adjacent genes. These genes were analyzed in this work
using the hybridization signals derived from their exclusive
probes. We first conducted lowess smoothing, then adjusted by
median to normalize the abundance of transposon. The final
gene identification results were verified by comparing with
experimentally proven essential genes from Escherichia coli
because Y. Pestis and E. coli are closely related bacteria and
they potentially share most essential genes.

This paper is organized as follows: Section 2 overviews
the Yersinia Pestis DNA microarray data. Section 3 proposes
the new gene-level adjusted multiple statistical test after an ex-
ploratory gene feature analysis. Two other methods are briefly
introuduced for comparison purpose. Those two methods are
based on Behrens-Fisher method (Shrestha an Ramachandran,
2008) and Hotelling t-square method (Lu et al., 2005). The
results on the number of essential genes detected are presented
in Section 4.

II. YERSINIA PESTIS DNA MICROARRAY DATA

OVERVIEW

The dataset contains the abundance measures for both wild
type (red) and mutant (green) for both positive and negative
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Fig. 2. Distributions of R/G ratios of positive (left) and negative (right)
strands.

strands. There are a total of 3229 Yersinia pestis genes and
69794 40-basepairs oligonucleotide probes meansurements. On
average, each gene is represented by about 25 probes. Most of
the genes have less than 40 probes. The only very long gene
is yapH which is cut into 273 probes. There are 14 genes
relatively shorter, but still very long with the number probes
between 100 and 200. They are hylA, gltB, tcaC1, clpB, rpoB,
rpoC, acrB, yapA, y1697, y2267, irp2, irp1, mukB and y3333.
As shown in Figure 2, the distributions of ratios are skewed
to the right hence we introduce log2 transformation. Figure 3
shows the distributions of log2(R/G).

III. GENE CLASSIFICATION METHODS

In this section we propose our gene-level adjusted multiple
statistical test, and compare the proposed methods with two
existing methods: Behrens-Fisher method and Hotelling t-
square test. The proposed method is detailed in Section III-A,
while Behrens-Fisher and Hotelling’s t-square based methods
are briefly introduced in Sections III-B and III-C, respectively,
for the completeness of the paper.

A. Gene-level adjusted multiple statistical test

Recall that in our dataset, there are unequal number of
probes for each gene. For each gene, two strands are present:
positive strand and negative strand. The logratio of red versus
green fluorescence abundances of transposons are calculated
and used to construct statistic. To be more precise, let X
be the lowess normalization followed by median adjusted
logratio of red versus green fluorescence abundances. Let nj

be the number of the probes for gene j. Denote XP
ij and XN

ij

as the lowess normalization and median adjustment logratio
fluorescence abundance for the ith probe of gene j from the
positive and negative strands, respectively. The normalized
and adjusted logratio vectors for gene j for the positive and
negative strands are

XP
j = (Xp

1j , X
p
2j , . . . , X

p
njj

) and XN
j = (XN

1j , X
N
2j , . . . , X

N
njj

).
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Fig. 3. Log-ratios against the probe location of genes mioC, nirD, trkD and
y4120

Our proposed method is based on the feature analysis of the
logratio against the location of the probes for each gene. After
examining a random sampled genes, we discover two features
for most of genes: (1) the average of the adjusted logratio
is less than 1 and the overall average is close to 0; (2) the
adjusted logratio shows opposite trend for the positive strand
and the negative strand: that is, if in positive strand, XP

ij is

less than XP
i+1,j or XP

i−1,j , then it is highly possible that

in negative strand, XN
ij is greater than XN

i+1,j or XN
i−1,j . To

illustrate these features, we randomly select four genes and
report the graphs of the logratios in Figure 4.

For feature comparison, we randomly select four experi-
mentally tested E. coli essential genes, also presented in the
Yersinia Pestis and examine the logratio features in Figure 5.
Figure 5 shows high values for the logratio of red versus green
abundance for E. coli essential gene. This is expected since the
DNA microarrray data were collected for detecting essential
genes under normal growth. One also observes that essential
genes don’t follow the opposite-trend rule as regular genes do.
For example for gene ileS, the average logratio of gene ileS
is greater than 1 at many positions and gene ileS significantly
breaks the opposite-trend rule at probe 23, probe 38, and probe
41. These three probes happen to be the positions where the
positive logratio has 3 peak values. Similarly for gene rplB, the
average logratio of gene rplB is greater than 1 at most positions
but significantly breaks the opposite-trend rule at probe 10,
probe 13, and probe 18. Also notice that these three probes
happen to be the positions where the positive logratio has 3
peak values. Similarly features for the rest chosen genes in
Figure 5.

Therefore, if we define statistic which can involve both
the position information and breaking rule behavior for each
individual gene, we are able to distinguish those genes whose
average logratios are significantly different from the other
genes. Based on the feature analysis, we propose two statistics
to detect essential genes: the position statistic and the trend
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Fig. 4. Log-ratio against the prob location for genes: ileS, rho, rplB and
obgE

statistic. For gene j, the position statistic is defined as aj , the
average of the the logratios. The trend statistic is defined as
below:

1. Top three probes: Let m1 be the index of the probe
where XP

ij attains maximum, m2 for the second peak
and m3 for the third peak.

2. Let I(·) be an indicator function. If 1 < m1 < nj , let

DP
1j = (XP

m1,j
−XP

m1−1,j), D
N
1j = (XN

m1,j
−XN

m1−1,j)

and

DP
2j = (XP

m1,j
−XP

m1+1,j), D
N
2j = (XN

m1,j
−XN

m1+1,j).

Then, we define our statistic as:

Z1j =
Z11j + Z12j

2
,

where

Z1ij =

{ ∣∣DP
ij

∣∣+ ∣∣DN
ij

∣∣ , if DP
ijD

N
ij ≥ 0,∣∣DP

ij +DN
ij

∣∣ , if DP
ijD

N
ij < 0

for i = 1, 2. For m1 = 1 and m1 = nj , we define
DP

1j = DP
2j , D

N
1j = DN

2j and DP
2j = DP

1j , D
N
2j = DN

1j
, respectively.

3. Repeat the same process for second peak and third
peak, which gives us two other statistics. Denote them
by Z2j and Z3j respectively.

4. We choose the maximum of the three statistics:

Zj = max(Z1j , Z2j , Z3j).

5. Outlier adjustment: Among the three probes, denote
the number of probes at which the fluorescence abun-
dance breaks the opposite trend rule by kj . Then
we utilize an outlier adjustment multiplier Okj

=
2kj−1 and let Z∗

j = Okj
Zj .
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6. Length adjustment: Since some gene only has less
than 5 probes while some others have more than 100
probes, we propose to do a probe length adjustment in
order to make our result more reliable. Here we only
do adjustment for those genes with extremely short
length or long length.

Z
′

j =

(
Z∗

j

c1
√
nj

)
I(0 ≤ nj < 10) + Z∗

j I(10 ≤ nj < 100)

+

(
Z∗

j

c2
√
nj

)
I(nj ≥ 100).

We choose the constants c1 and c2 by minimizing the
mean of differences between the statistics from the
different strands of the gene according to the probe
length. This criterion is intended to minimize the
probe length dependency. Other methods of choosing
c’s are shown in Gao et al. (2011).

7. Position statistic and trend statistic combination: Fi-
nally we multiply the position statistic by the trend

statistic to define the proposed statistic: Z̃j = aj ∗Z
′

j .
Therefore, if one gene not only has significant high
logratio, but also breaks the opposite-trend rule, we
can easily detect it out by right-tail test; if one gene
doesn’t have significant high logratio, but still breaks
the opposite-trend rule, we can also detect it out if
the trend statistic is extremely high compared to the
average. This is also true if the the gene doesn’t
significantly breaks the opposite-trend rule while it
does have extremely high average logratio; at last, if
the gene has low average value and doesn’t break the
opposite-trend rule, this statistic will be very small,
hence is classified as nonessential.

The computing algorithm for each gene can be visualized
through the flow chart in Figure 6.

Using the proposed statistic, we conduct right-tail tests
according to the purpose of the microarray data. Due to the
multiple hypothesis testing problem, we choose to control both
FWER (the probability of at least one false positive in the set
of significant genes) and FDR. For FWER, we use the Holm’s
step-down procedure (1979). Figure 6 shows the histogram of
unadjusted p-values and the volcano plot. The plotted along
the x-axis is a measure of effect size (here, the mean fold-
change) and along the y-axis is a measure of significance
(here, the negative logarithm of the p-value). One can find
that some of the genes have a large average fold-change, but
low significance, and high significance does not always imply
large effect size. From Figure 6, one observes a number of
genes with very low p-values (which correspond to essential
genes) and a whole range of insignificant p-values.

It is well known that FWER is greater than FDR in
general. Therefore, FDR control is less strict than the FWER
control, hence it has more power. They are equal only if all
null hypotheses are true. Instead of controlling the FWER,
Benjamini and Hochberg (1995) proposed a method to control
the FDR. We utilize Benjamini and Hochberg (1995) procedure
as implemented in R package multtest to control the FDR.
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Fig. 5. The flow chart of the proposed algorithm
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Fig. 6. The histogram of the unadjusted p-values (left) and the volcano plot
(right) of the tests

B. Behrens-Fisher method

Since positive and negative strands are from two popu-
lations with unequal variances, in this case neither a pivotal
statistic nor an exact confidence interval procedure exist,
see Efron, Tibshirani and Tusher (2001) for reference. To
solve the inhomogeneous variance problem, Shrestha and
Ramachandran (2008) introduced Behrens-Fisher method. For
completeness, we brief introduce the method as below:

For each gene, let μP
0 and μN

0 be the prior means of the
logratios, m and n be the number of probes, x̄P and x̄N

be the sample means, s2P and s2N be the sample variances,
respectively. Then the Behrens-Fisher statistic is defined as

B =
μP
0 − μN

0 − (x̄P − x̄N )√
s2P /m+ s2N/n

= BP cosθ −BNsinθ,

where,

tanθ =
sN/

√
n

sP /
√
m
, 0 ≤ θ ≤ π

2
,
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TABLE I. PRE-CLASSIFICATION OF GENES

Number of probes Number of genes

(0, 3) 83

[3, 10) 708

[10, 20) 1015

[20, 30) 719

[30, 40) 328

[40, 50) 166

[50, 60) 89

[60, 70) 46

[70, 300) 75

and

BP =
(μP

0 − x̄P )

sP /
√
m

, BN =
μN
0 − x̄N

sN/
√
n

.

It has been shown in Shrestha and Ramachandran (2008) that
the statistic B is asympotically distributed as the Behrens-
Fisher (BF) distribution with υm and ωn degrees of freedom,
where υm = m+ μP

0 − 1, ωn = n+ μN
0 − 1.

Due to the complexity of the pdf of the BF-distribution,
it is very hard to compute the corresponding probabilities,
especially due to the possibility of the fractional degrees of
freedom. Because of this, various types of approximations
have been proposed. We shall adopt Patil’s t-approximation
as in Shrestha and Ramachandran (2008): B

a
∼ t(b), where

a2 = (b−2)
b

f1, b
2 = 4 +

f2

1

f2
, and

f1 =

(
ωn

ωn − 2

)
cos2θ +

(
υm

υm − 2

)
sin2θ,

f2 =
ω2
n

(ωn − 2)2(ωn − 4)
cos4θ +

υ2
m

(υm − 2)2(υm − 4)
sin4θ.

Therefore, we can calculate the p-value for each gene,
followed by the multiple testing procedure controling FWER
or FDR.

C. Hotelling’s t-square method

The Hotelling’s t-square statistic is a natural multidimen-
tional extension of the t-statistic that is currently a widespread
approach for detecting essential genes in testing individual
genes, see Lu et al. (2005) and Song et al. (2006). But it
requires the equal number of observations for all genes.

Therefore, before we adopt the Hotelling’s t-square
method, we do a pre-classification for our dataset. Genes with
less than 3 probes go to the first group, genes with probe
numbers greater or equal to 3 and less than 10 go to the second
group, and so on, as shown in Table 1.

There are two strands for each gene, and these two strands
serve as our two populations. Genes might be correlated to
each other, so we use Hotelling’s t-square test. In this section,
we adopt the multiple forward search algorithm from Lu et al.
(2005). For completeness, we brief introduce this algorithm as
below:

We consider K genes from some group in Table 1 and
denote XP

i. = (XP
i1, ..., X

P
iK)′ and XN

i. = (XN
i1 , ..., X

N
iK)′ for

the ith observation of the positive and negative strands, re-
spectively. Let X̄P

j and X̄N
j be the sample average of positive

and negative for gene j, j = 1, ...,K. Let n be the smallest

number of probes for the K genes. Note that since the group
interval length is at most ten (except the last class interval
in Table 1), the truncated portion may not cause big loss of
information. Let the average fluorescence abundance vector for
K genes be X̄P = (X̄P

1 , ..., X̄P
K)′ and X̄N = (X̄N

1 , ..., X̄N
K )′,

the corresponding sample variance-covariance matrix be SP

and SN for positive and negative strands, respectively. Then
the pooled variance-covariance matrix is

S =
(n− 1)SP + (n− 1)SN

2n− 2

=
1

2n− 2

[
n∑

i=1

(
XP

i. − X̄P
) (

XP
i. − X̄P

)′

+
n∑

i=1

(
XN

i. − X̄N
) (

XN
i. − X̄N

)′]
.

Therefore, Hotelling’s T 2 statistic for fluorescence abundance
is then defined as,

T 2 =
n

2

(
X̄P − X̄N

)
S−1

(
X̄P − X̄N

)′
.

This statistic combines information from the mean and disper-
sion of all genes being tested in microarray data. The central
limit theorem implies that

2n−K − 1

(2n− 2)K
T 2 ∼ F (K, 2n−K − 1).

Then we use the following multiple forward searh algorithm
(Lu et al. 2005) to detect essential genes:

Step 1. Calculate T 2 statistics for each gene and locate gene
j1 that maximizes T 2, denoting T 2

j1
.

Step 2. Keep gene j1 as the first essential gene. Then find
the group that gene j1 falls. To be more specific, if
p-value of T 2

j1
< α (a predefined significance level),

calculate T 2 statistic for two genes: one is the gene
j1 and the other is one of the remaining genes in the
group gene j1 falls. If the number of probes of the
second gene is smaller than the first, we truncate gene
j1 by several probes; Otherwise we do permutation
to make sure their probe length match. Since they
are in same group, the probe length will not differ
more than 9, in this sense we reduce the possible
error since otherwise we may have large difference
between two probe lengths. Then we find the gene
j2 that maximizes T 2 combining with the gene j1,
denoting T 2

j1,j2
.

Step 3. Continue to add genes one at a time to compute T 2

as in step 2, until the p value of the T 2 is increases
or 2n−K − 1 < 0.

Step 4. Exclude those genes detected from steps 1-3. Repeat
steps 2 and 3 for the gene in the step 1 with the
second largest T 2 statistic. Stop this loop until we
get to the genes with p-value of T 2 ≥ α (a predefined
significance level), and stop searching.

IV. RESULTS

In this section, we report the detected number of essential
genes and number of non-essential genes using all three
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TABLE II. RESULTS OF ESSENTIAL GENES DETECTED:
1=GENE-LEVEL ADJUSTED MULTIPLE T-TEST, 2=BEHRENS-FISHER

METHOD, 3=HOTELLING’S T-SQUARE, (1,2,3)=COMMON IN THREE

METHODS.

Method Essential Nonessential Genes in Ecoli list

1 507 2722 117

2 699 2530 42

3 306 2923 35

(1, 2, 3) 72 2369

TABLE III. COMPARISON OF GENE-LEVEL ADJUSTED T-TEST USING

FDR AND FWER CRITERIA

Criterion Essential Nonessential Genes in Ecoli list

FWER 507 2722 117

FDR 533 2696 128

Both 496 2698 113

methods. One notices from Table 2 that Behrens-Fisher method
detects a large number of essential genes, followed by gene-
level adjusted multiple t-test, and then Hotelling’s t-square test.
Among those genes, only 72 genes were detected essential by
all three methods. In fact, out of the 3229 Yersinia Pestis genes
studied in this work, there are only 193 genes presented in
the reference E. coli essential gene list. Notice that the newly
proposed gene-level adjusted multiple test detects about 61%
of essential genes in the reference E. coli essential gene list,
while Behrens-Fisher method and Hotelling’s t-square method
only pick up about 22% and 18%, respectively, as shown in
the last column of Table 2.

Table 3 shows the comparison of gene-level adjusted
multiple t-test controling both FDR and FWER criteria. From
Table 3, one observes that the two controling criteria give rise
reliable list of essential genes, with a little higher number by
controlling FDR than controling FWER. Among the common
detected 496 essential genes, 113 genes, about 59% in the
reference E. coli essential gene list, are classified as essential
by both controling criteria.

V. CONCLUSION AND DISCUSSION

Based on the feature analysis of the gene hybridization
signals along the probe location, we subjectively select three
top probes as the representatives for each gene. Utilizing those
three selected probes, we define our gene-level adjusted mul-
tiple t-test statistic. The benefit of this method is the essential
feature extraction from each gene and so that the essentiality
of the gene is detected. The limitation of this method is the
subjective number of probes selected. The question is how
many representative probes one should select for such kind of
data with highly varying number of observations for all genes?
Similarly, on the outlier adjustment and length bias adjustment,
our choice of mupliers are subjective. It is necessary to study
the reliability of the essential genes detected through knock
out experimental study.
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