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Abstract—Understanding the relationship between genetic
diseases and the genes associated with them is an important
problem regarding human health. The vast amount of data
created from a large number of high-throughput experiments
performed in the last few years has resulted in an unprecedented
growth in computational methods to tackle the disease gene
association problem. Nowadays, it is clear that many of genetic
diseases are not consequence of defects in a single gene.
Instead, the disease phenotype is a reflection of various genetic
components interacting in a complex network. In fact, most of
genetic diseases occur as a result of various genes working in
sync with each other in a single or several biological module(s).
Using a genetic algorithm, we have devised a computational
approach for disease-gene association. As a proof of concept, we
apply this method to the problem of identifying genes involved
in breast cancer.
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I. INTRODUCTION

Associating genes with phenotypes has been one of the
most demanding research subjects in bioinformatics. One of
the major parts of gene-phenotype association research is to
associate genes with a specific group of phenotypes, i.e. the
genetic diseases. The specific research area dealing with this
problem is called the disease-gene association problem, or
identification of disease genes, or disease gene prediction,
i.e. identifying the genes which are in any way involved
in the existence of a given genetic disease or disorder.
Associating genes with genetic diseases and disorders is
crucial to identify the genetic basis of human diseases.
Procuring more information and knowledge about the genes
behind a given disorder can lead to more effective diagnosis,
improved prognosis, and development of improved therapeu-
tic strategies to treat the genetic diseases and disorders.

Bioinformatics tries to tackle the disease-gene association
problem via developing computational disease-gene predic-
tion methods. These methods or tools apply the discoveries
and findings from years of research in related areas by
examining useful information from the literature to associate
genes with diseases [18].

Disease-gene prediction methods choose potential disease
genes from a set of candidate genes usually determined
by different experimental and other computational methods
including Genomewide Association Studies (GWAS) and
Linkage Analysis. In Genomewide Association Studies many
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and various SNPs (Single Nucleotide Polymorphism) are
statistically investigated for association with genetic disease
in hundreds or thousands of individuals [8]. Linkage Anal-
ysis typically associates certain chromosomal loci (linkage
interval) with a particular disease phenotype [13].

Different types of evidence in the literature are applied
by disease gene prediction methods to identify the genes
associated with diseases. Text-mining of biomedical literature
discovers gene-disease association by using natural language
processing techniques over huge quantities of related written
knowledge. These uses data resources such as PubMed [1]
and OMIM [14] which contain a multitude of biomedical
abstracts and studies (e.g. [2], [5], [22], [30]). Functional
annotation identifies unknown genes involved in disease by
examining the same pathways or functionalities as other
known disease genes, as these are likely to be connected to
the diseases under study (e.g. Gene Ontology [3], KEGG[19],
and Human Phenotype Ontology [34]). Phenotype relation-
ships uses the similarities among various diseases and pheno-
types to predict potential disease genes (e.g. Mimminer[38],
[9]1). Protein-protein interaction networks (PPI) represent
physical interactions between proteins; this is one of the
strongest and most frequently used types of evidence for
disease gene prediction [27] (see also [13], [44], [29], [17],
[43], [20], [39], [7], [23]). Gene expression information is
one of the least biased pieces of evidence provided by
high-throughput experiments [31]. Gene regulatory networks
indicate how genes’ expression levels are controlled by
regulators, i.e. other genes, proteins and molecules in the
cell[32]. Next-generation sequencing data and inherent gene
or protein properties (e.g. length, phylogenetic analysis of
genes, conversation degree etc.) have also been used as clues
to associate genes with disease [31]. For further information
on the various evidence, tools, and computational approaches
so far developed and used to associate disease with genes,
see [13], [31], [18], [37], [6] and [26].

One of the most important pieces of information in
the literature which can aid computational disease gene
prediction methods to associate diseases with genes is the
already established set of known disease genes, i.e. those
genes that have already been observed to be involved in a
given disease. Knowledge about known disease genes can be
crucial for disease gene prediction methods to identify new
novel disease genes, mainly because genes causing the same
or similar diseases tend to lie close to one another in the
networks in which they interact. For example, genes related

IEEE
computer
psouety



to the same disease are known to have protein products that
physically interact. Also, previous studies have shown that
mutations in multiple proteins that form a protein complex
may lead to the same disease phenotype [39]. This is called
the principle of guilt by association. This is also called the
modular nature of genetic disease, i.e. that various genes
involved in the same phenotypes work together in a single
biological module [28].

Due to the complexity of the interactions among the
genes and the remarkable amount of discovered interactions
among genes and their products (i.e. proteins), disease-gene
association is not a matter of establishing simple connections
between known disease genes and candidate genes using a
set of straight-forward evidence [4]. It is crucial to note
that complex phenotypes and diseases are far beyond the
sum of independent effects of the individual genes. In many
of the cases,“the impact of a specific genetic abnormality
is not restricted to the activity of the gene product that
carries it, but can spread along the links of the network,
and alter the activity of gene products that carry no defects”
[4]. Furthermore, “the phenotypic impact of a defect is
not necessarily determined only by the known function of
the mutated gene, but also by the functions of components
with which the gene and its products interact and of their
interactions partners, i.e., by its network context” [4]. From
these key assumptions, it is concluded that genetic disorders
could be reflection of various components (genes, proteins,
etc.) interacting in a complex network.

Classic forms of disease gene prediction approaches, in
the absence of considering the notion of complex networks,
were not able to process the myriads of interactions among
the genes and proteins. It has been shown that it is nec-
essary to process and observe the interactions among the
complex system’s components in order to find facts and
draw conclusions about these systems. As stated in [25],
“Many of the ideas are disguised behind the interactions
among the components, and not inside the component”. This
corresponds to what Aristotle said in 335-323 BCE, “The
whole is more than the sum of its parts” [12].

II. COMMUNITY IDENTIFICATION AND DISEASE GENE

ASSOCIATION

Complex networks have a tendency to form different
communities, usually each pursuing different functionality
working in sync with each other [35]. Some examples include
different regions of the brain, web pages about the same or
similar topics on the World Wide Web, or proteins interacting
with one another to perform a specific function. The network
inside the communities is relatively dense compared to
the parts of the network residing outside the communities.
Descriptively, communities are sub-graphs with a higher
level of internal interconnection than other sub-graphs of
the network [21]. Based on how great a difference there is
between the number of internal and external connections of a
given community, the community can be considered a weak
community or a strong one.

Different phenotypes including diseases are fairly likely
to be assigned to a group of nodes (i.e. genes, RNA
molecules, proteins and other distinct cellular components)
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working closely with one another as a community of the
gigantic complex network of the human interactome, a
network which is believed to contain some 25000 protein-
encoding genes and a still higher number of unknown and
undefined proteins and their interactions [4].

In 2002, the field of complex network community iden-
tification was first studied by Newman and Girvan [11].
The community identification problem contains within it two
subproblems: (1) given a network, identify all communities
working in sync with each other in the network, and (2)
given a node or a group of nodes, identify the community or
communities to which these nodes belong. Both subproblems
have been shown to be NP-complete. The latter problem is
little studied in comparison to the former one [40].

From the modern viewpoint of genetics (referred to as the
molecular revolution [25]), disease-gene association can be
redefined as: given a number of genes known to be involved
in a disease, computationally examine the current available
human interactome in the vicinity of the known disease
genes to detect the community or communities in which
these genes closely interact with one another. Discovering
such communities sheds light on genes closely working
with known disease genes and steers us towards predicting
new disease genes. Therefore, computational disease genes
prediction matches the second subproblem of community
identification mentioned above.

III. METHODOLOGY

In this study, we propose a computational disease-gene
association method using a genetic algorithm. Genetic al-
gorithms have been proven to be effective in finding near-
optimal solutions for many NP problems [25]. The main
idea of GA is to mimic evolution and the Darwinian natural
selection process to find a satisfactory solution for a given
computational problem. The first serious effort to apply GAs
to practical problems was work done by John Holland and
his students at the University of Michigan in the 1970s [25].
Generally, a genetic algorithm tries to evolve a population of
candidate solutions for the problem at hand. These candidate
solutions are also called chromosomes or individuals. Each
candidate solution is assigned a fitness value measured by
a fitness function. The fitness value measures how good the
solution is for the given problem. GA individuals undergo
cross-over which is applied on two or more individuals
(chromosomes) for offspring reproduction, and mutation
which mimics possible mutations when new individuals are
reproduced. A general recipe for a genetic algorithm can be
described as having the following steps: 1) Generate an initial
population of candidate solutions. These solutions are usually
created randomly. 2) Measure the fitness of each individual
in the current population. 3) If there is a solution in the
population with the desired fitness value, or if the number
of generations has reached the predefined maximum number
of generations, then the program stops 4) Randomly select a
number of the individuals and select a number of them to be
the parents reproducing individuals for the next generation.
5) Generate the population for the next generation. 6) Go to
2.

We chose to use a genetic algorithm because we wished
to produce a population of various communities. Note that



our ranking for a given gene actually depends on all of the
communities in the population over generations. See Sections
III-E and VIII for further information on this point.

Prior to clarifying the technical details of our GA-based
disease gene prediction method, we first review its general
properties.

Using a genetic algorithm, our computational method
tries to evolve a community containing the set of potential
disease genes likely to be involved in a given genetic disease.
Having a set of known disease genes already believed to
be involved in a disease, we first obtain a protein-protein
interaction network containing all the selected known disease
genes, as described in Section IV-A. All the other genes
inside the procured PPI network are then considered as
candidate disease genes as they lie in the vicinity of the
known disease genes in the human interactome. Our method
attempts to find a community of potential disease genes
strongly working with one another and with the genes in
the known disease genes set.

In our GA-based approach, each individual within a
population is a candidate community of genes that may be
involved in a given disease. The initial population consists
of individuals that are simply randomly-created communities.
At each generation, the GA tries to evolve individuals (com-
munities) that have a relatively high degree of collaboration
between the known disease genes and the other genes within
the individual (community), and that also that have a high
degree of collaboration among all the genes inside the indi-
vidual (community). The more collaborative the genes are in
the evolved individual (community) with the known disease
genes and with one another, the more likely it is that the
individual (community) contains genes potentially involved
in the disease under study. Intuitively, in our method, the
GA tries to find subnetworks of the interaction network
that are as modular and collaborative as possible, where the
subnetworks also contain the known disease genes.

A. Fitness Evaluation

As previously stated, our GA tries to increase the degree
of collaboration (i.e. the modularity) of the nodes (i.e. genes)
inside the evolving communities. This is mainly because
a community is recognized as a subgraph that is denser
inside in comparison to the areas of the network around
the subgraph. Therefore, as we can see in the community
identification problem literature, measuring the modularity of
a given community revolves around comparing the density
of the area residing inside the community to the areas around
the community. To see a general review of the various metrics
used to measure the quality of a given community, see [40].

Hence, reasonably enough, the fitness value should as-
sess the modularity degree of the candidate communities
(individuals in a given generation) to increase the likelihood
of reproduction for the more modular individuals across the
generations.

For the experiments we have performed so far, we have
used the simple modularity function ) proposed by Luo et
al. [24], also known as subgraph modularity. This modularity
function simply divides the number of the edges inside the
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community C' by the number of all the edges involved with
the community:

) K (C)
wer= Zo KO = k) + Kerey
where
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jec
is the number of edges connecting i to other nodes in C' and

K"(C) =Y E(i,j) 3)
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is the number of edges connecting i to the nodes out of C.

B. Individuals (Chromosomes)

As mentioned in the previous sections, individuals (can-
didate solutions) are induced subnetworks that are potential
disease gene communities. Individuals are represented using
binary arrays of length NN, where N is the size of the
protein-protein interaction network (i.e. the number of all
the genes in the network). If the ith element of the array
is 1, then the ith gene of the network is considered to be
in the candidate community; otherwise it is outside of the
candidate community.

C. Linkage with known disease genes (Guilt by Association)

Like most of the computational disease gene prediction
frameworks, this method also revolves around the Guilt by
Association principle. This principle is crucial here to make
sure that the final selected disease community contains the
genes interacting with a high-degree of modularity (collabo-
ration) to the known disease genes as well as to each other.

To provide this important feature for our GA-based
method, all the individuals in all the populations (i.e. all the
induced evolving subgraphs) always hold the known disease
genes inside them. In fact, we force all evolving subnetworks
to include all known disease genes. In other words, all the
known disease genes are added to candidate communities
while their fitness values are measured. This approach steers
the whole process to finding communities in which genes are
in high collaboration with the known disease genes.

D. Maximum Community Size

The maximum number of the nodes (genes) that can
be inside a candidate community (individual representing a
sub-network) is determined in advance of starting the GA.
As a matter of fact, we deliberately force all candidate
communities to contain no more than a specific fraction of
the network’s genes. This is mostly for the following reasons:
(1) to avoid obtaining unwanted futile solutions such as a big
community containing most of the network’s genes (which
cannot be considered a community any more), (2) to provide
more a competitive environment across the communities’
evolution, and above all (3) to supervise the convergence
trajectory of the sub-networks towards the disease genes
community we wish to obtain, i.e. the way in which the



individuals converge towards the community of disease genes
over generations in order to define a scoring system to
prioritize candidate genes (see Section III-E).

In other words, candidate communities of the pre-
determined maximum size could be interpreted as frames
that move over the various areas of the network during the
generations of the GA. Being evolved by the GA, these
frames have a tendency to move towards the areas of the
network that show higher collaborations and modularity with
the known disease genes.

To avoid acquiring biased output, we perform the same
GA experiment several times to make sure that the popu-
lation, i.e. all induced sub-networks, converges towards the
same area of the network as the disease genes community.

E. Prioritization of Candidate Genes

Each experiment performed by our GA contains the
following as input data: a set of known disease genes and
a PPI network containing all known disease genes and a set
of candidate genes. All the genes cumulatively gather scores
while the candidate communities (individuals) are evolved
over generations. The scoring method is based on the idea
that genes which are more frequently selected in candidate
communities, while they are being evolved over generations,
should accumulate higher scores. Therefore, genes which
survive for a greater number of generations, and which are
in a greater number of communities, acquire higher scores.
The cumulative score of a given gene is proportional to the
fitness value of the communities for which it is selected. In
other words, in being selected for better communities (i.e.
individuals with higher fitness value), genes get relatively
higher scores. Over generations, candidate communities (in-
dividuals of every generation) gradually converge into sets of
genes that are in higher collaboration with the known disease
genes and with one another. Therefore as the candidate
communities are evolved by the GA, they are more likely
to be in the vicinity of the community we are looking for,
i.e. the predicted disease genes set.

The scoring function for a given candidate gene is calcu-
lated based upon Algorithm 1, where Q(c) is the modularity
of the community C as defined in Section III-A.

Algorithm 1 Calculate score of gene ¢

for each generation do
for each candidate community C' in population do
if gene ¢ is in C then Score(i) = Score(?) + Q(C)
end if
end for
end for

IV. BENCHMARK TESTS
A. Leave-One-Out Cross-Validation

To assess the performance of our GA-base method, we
used the leave-one-out cross-validation procedure. This pro-
cedure is the most frequently used procedure to assess many
of the state-of-the-art disease-gene associations approaches,
including [43], [39], [20] and many others.

According to the leave-one-out cross-validation proce-
dure, for every time performing the experiment, one of the
known disease genes is removed from the known disease
genes set, to observe whether or not the method can again
recover this gene as a high associative gene. In other words
[23], given a set of known disease genes D and a set of
candidate genes C' a gene d € D is left out and all genes in
C'U{d} are ranked using the computational approach under
study. This process is repeated for every gene in the known
disease genes set.

B. Fold enrichment analysis

Fold enrichment analysis is an important concept for
using the leave-one-out cross-validation procedure. Here, we
offer the simple and clear definition provided by X Wu et
al [43]: if a method successfully ranks known disease genes
in the top m% of all candidate genes for n% of the known
disease genes, then there is on average a n/m-fold enrich-
ment. Therefore, a threshold must be chosen to separate the
two prediction classes. If a left-out known disease gene in
leave-one-out cross-validation does not exceed the specified
threshold in the candidate genes ranking, then it is considered
as a successfully predicted gene in the validation.

C. Receiver-Operating Characteristic (ROC) analysis

Another concept involved with the leave-one-out cross-
validation performance measure is the receiver-operating
characteristic (ROC) analysis. ROC is defined as a plot to
measure the performance of a binary classifier according to
a defined discriminating threshold. Here, for the disease-
gene association/prioritization problem, ROC plots the true-
positive(TP) rate versus the false-positive(FP) rate, subject
to the threshold separating the prediction classes (see IV-B).
We consider again the sets D and C and disease gene d
introduced in IV-A. Suppose that 6§ is the threshold which
must not be exceeded by the rank of known disease gene d
in order for it to be considered as a successfully predicted
known disease gene. TP(true positive) is the number of test
cases where the ranking of d is less than 6, and FN(false
negative) is the number of test cases where the ranking of d
exceeds 6. The sensitivity of the computational disease-gene
prioritization method for a given experiment is then defined
by equation 4:

S itivity = TP “)
ensitivity = s

V. DATABASES AND INFORMATION RESOURCES
A. Protein-Protein Interaction Data

We obtained human PPI interaction network data using
GeneMANIA [42], reported to be among the best performing
methods in a public large scale computational biology chal-
lenge [33]. The homo sapiens (human) interaction database
of GeneMania records different types of interactions (co-
expression, protein interaction, pathway, co-localization etc.)
based on 395 different interaction databases developed so
far. It contains the interactions among 21435 genes from the
human genome.



B. Disease-Gene Association Data

In order to select disease genes and make the association
between particular diseases and particular genes evidenced,
we used Genotator [41], developed at Harvard University.
Genotator is a realtime aggregation tool that provides both
comprehensive coverage and reliable gene-to-disease rank-
ings for many of the diseases. It integrates data from 11 well-
known frequently used clinical genetics resources including
Pubmed [1], OMIM [15], GeneCards [36], HuGE Navigator
[45], GenAtlas [10], WikiGenes [16] and other phenotype-
gene association data sources to rank genes in order of
disease relevance.

VI

As a proof of concept, we applied our methodology
to the problem of finding genes involved in breast cancer.
We selected breast cancer due to the diversity of related
studies and because there is a significant amount of research
literature.

EXPERIMENTAL RESULTS

A. Input Data

We used the same input data as Xuebing et al [43] used
to demonstrate the ability of CIPHER, one of the most
well-known and frequently used disease-gene association
framework. Using OMIM[15], they selected 16 disease genes
known to be involved in breast cancer. They measured the
ability of CIPHER to predict disease genes based on these
16 genes. Table I outlines these genes.

TABLE 1. KNOWN DISEASE GENES FOR BREAST CANCER
[ Gene [] NCBIID |
BRCALI 672
BRCA2 675
TP53 7157
AR 367
ATM 472
CHEK2 11200
STK11 6794
RADS1 5888
PTEN 5728
BARDI1 580
RBICCI 9821
NCOA3 8202
PIK3CA 5290
PPMI1D 8493
CASP8 841
TGF1 281527

Using GeneMania (see V-A), we obtained an un-weighted
protein-protein interaction network containing the 16 disease
genes shown above. We defined the candidate genes to be
the first 2000 genes scored by GeneMania in the order of
interactions with these 16 disease genes.

B. GA Parameters

We ran our GA-based method on this PPI network 20
separate times. Table II outlines our GA parameters for all
20 executions of the GA. These parameters were empirically
determined. It should be noted that further study should
be performed on determining the most appropriate values
for these parameters for other experiments (e.g. for other
diseases).
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TABLE II. GA PARAMETER SETTINGS
‘ Parameter [[ Value |
number of generations 300

population size 5000

Cross-over rate %95
mutation rate P05
tournament size 3

fitness evaluation Q(C)
maximum community size 50

Figure 1 depicts the progression of the averages of best
fitness values, and the averages of average fitness values for
the 20 runs of the GA over the generations.
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Fig. 1. averages of best/average fitness values over generations

VII. ANALYSIS

A. Leave-One-Out Cross-Validation

Running our GA-based method on the input data de-
scribed in VI-A and based on the parameters outlined in
Table II, and using leave-one-out cross-validation method
(explained in IV-A), our method successfully predicted 12
out of 16 genes as being involved in breast cancer. The
threshold (0 - see Section IV) was set to the size of the
community of the disease-genes the GA was evolving over
generations (here, 50). Table III shows the 12 predicted genes
and median of their 20 different rankings as a result of
running the experiment 20 times.

B. Comparison with CIPHER

CIPHER [43] used the same known genes, successfully
ranking known disease genes in the top 0.917% of all
candidate genes in 49.1% of test cases, giving them a fold
enrichment of 53.50 on average. If we consider the top 1%
of all candidate genes, Our GA-based approach gives fold
enrichment of 50 on average, fold enrichment of 56.25 for
the ranking offered by the best solution procured by GA, and
fold enrichment of 62.50 if we consider the best rankings of
the known disease genes among all 20 rankings given by
GA.



TABLE II1. 12 SUCCESSFULLY PREDICTED GENES OUT OF THE 16
KNOWN DISEASE GENES LISTED IN TABLE I
[ Gene || Median of 20 rankings [[ Best Ranking of all |

BRCALI 1 1
TP53 1 1
BRCA2 5 1
ATM 6 3
AR 8 2
PPMI1D 16.50 8
BARDI1 19.50 5
RADS1 20 13
RBICCI1 22 10
PTEN 34.50 22
STK11 42.50 17
NCOA3 46 27

Based on the acquired results, ROC analysis (see IV-C)
gives us 12 TPs and 4 FNs, thus the sensitivity of this
experiment is 75%. The sensitivity of the experiment for
CIPHER was 62.50% as a result of 10 TPs and 6 FNs.

C. Predicting new Disease Genes

We briefly studied other candidate genes ranked among
the top 1% of the candidate genes on average using the
Genotator (see V-B). Our GA successfully predicted some
other genes involved in breast cancer which were not in
the known disease-genes set of the performed experiment.
Among the other potential breast cancer genes ranked among
the top 1% are ESR1, NBN, CHECKI, H2AFX, EP300,
SMAD3, and other genes for which all have evidence of
being involved in breast cancer by different data sources
according to Genotator.

VIII. DISCUSSION

As elaborated in previous sections, our method tries to
evolve a set of candidate genes with as much collaboration
with the whole set of known disease genes as possible.
It starts from randomly created communities of genes and
optimizes the communities over generations, based on the
modularity of the community (equation 1). The idea be-
hind the scoring system (algorithm 1) we used is that the
more frequently a gene is chosen to be in the optimizing
communities, i.e. the more a gene is selected for the more
optimized communities of the higher generations, the more
it is associated with the known disease genes, and therefore
should have a higher score compared to others that are
selected less often.

Genes associated with a specific disease may act in
separate communities which work with one another, or
separate communities which overlap. We intuitively believe
that our GA-based computation is capable of finding disease
genes working in different communities or in overlapped
communities for the following reasons. First, as the evolv-
ing populations contain thousands of different communities,
different communities which work with the known disease
genes would have the chance to evolve and be in the
population at the same time. Genes in all such communities
will get high scores as they are often selected in a number of
the population’s communities over generations, thereby they
can increase their scores. Secondly, potential disease genes
which lie in more than one community working with disease
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genes are selected more frequently as they can have the
chance to be in many of the communities of the populations.

As a proof of concept, we tested our approach on 16
breast cancer genes taken from the similar experiments per-
formed by Xuebing et al [43] to test the performance of CI-
PHER, a well-known disease gene prioritization framework.
The results are satisfactory as one of the first experiments
using a newly developing approach, however, there should
be specific and more accurate strategies to determine the
known disease gene set with regarding to different diseases
and choosing appropriate GA parameters.

Determining an appropriate maximum community size
for use in our method is also a matter of discussion. Different
maximum community sizes can obviously affect the number
of times each gene would be allowed inside the evolving
community, thereby affecting the scores acquired by each
gene. Here we chose a maximum community of size of
50, however further investigation should be conducted on
this parameter, considering supporting reasons for choosing
a given value. The accuracy of the results may possibly be
increased as a result.

Concisely speaking, appropriate strategies and different
parameter values may vary significantly from one disease to
another.

IX. CONCLUSION

Although protein-protein interaction networks have been
shown to be among the most powerful pieces of evidence
for disease-gene association ([7], [27]), there are still major
concerns about the amount, accuracy, and quality of the
available data, and there are still a considerable amount of
interactions that are not well-studied [31]. To obtain more
accurate and reliable disease genes communities one may
use a fusion of different network-based data resources along
with PPI [18].

It should be noted nonetheless that this is a proof of
concept and that much further study remains. Most im-
portantly, this method should be applied to other diseases.
Also, as specified in section VIII above, future work must
include further study of appropriate parameters, especially
with respect to appropriate parameters for different diseases.

ACKNOWLEDGMENT

This research was supported in part by the Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

[1] Abigail Acland, Richa Agarwala, Tanya Barrett, Jeff Beck, Den-
nis A Benson, Colleen Bollin, Evan Bolton, Stephen H Bryant,
Kathi Canese, Deanna M Church, et al. Database resources of the
national center for biotechnology information. Nucleic acids research,

42(D1):D7, 2014.

Russ B Altman, Casey M Bergman, Judith Blake, Christian Blaschke,
Aaron Cohen, Frank Gannon, Les Grivell, Udo Hahn, William Hersh,
Lynette Hirschman, et al. Text mining for biology-the way forward:
opinions from leading scientists. Genome Biol, 9(Suppl 2):S7, 2008.
Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein,
Heather Butler, J Michael Cherry, Allan P Davis, Kara Dolinski,
Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool for the
unification of biology. Nature genetics, 25(1):25-29, 2000.

(2]

(31



[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Albert-Laszl6 Barabdsi, Natali Gulbahce, and Joseph Loscalzo. Net-
work medicine: a network-based approach to human disease. Nature
Reviews Genetics, 12(1):56-68, 2011.

Christian Blaschke, Miguel A Andrade, Christos A Ouzounis, and
Alfonso Valencia. Automatic extraction of biological information
from scientific text: protein-protein interactions. In Ismb, volume 7,
pages 60—67, 1999.

Yana Bromberg. Disease gene prioritization. PLoS computational
biology, 9(4):¢1002902, 2013.

Jing Chen, Bruce J Aronow, and Anil G Jegga. Disease candidate gene
identification and prioritization using protein interaction networks.
BMC bioinformatics, 10(1):73, 2009.

W Gregory Feero, Alan E Guttmacher, and Teri A Manolio.
Genomewide association studies and assessment of the risk of disease.
New England Journal of Medicine, 363(2):166—-176, 2010.

Jan Freudenberg and P Propping. A similarity-based method for
genome-wide prediction of disease-relevant human genes. Bioinfor-
matics, 18(suppl 2):S110-S115, 2002.

Jean Frézal. Genatlas database, genes and development defects.
Comptes Rendus de I’Académie des Sciences-Series IlI-Sciences de
la Vie, 321(10):805-817, 1998.

Michelle Girvan and Mark EJ Newman. Community structure in
social and biological networks. Proceedings of the National Academy
of Sciences, 99(12):7821-7826, 2002.

John Gribbin, Jeremy Cherfas, Douglas Palmer, and Adam Hart-
Davis. Science: the definitive visual guide. Dorling Kindersley Ltd,
2009.

Emre Guney and Baldo Oliva. Exploiting protein-protein interaction
networks for genome-wide disease-gene prioritization. PloS one,
7(9):e43557, 2012.

Ada Hamosh, Alan F Scott, Joanna S Amberger, Carol A Bocchini,
and Victor A McKusick. Online mendelian inheritance in man
(omim), a knowledgebase of human genes and genetic disorders.
Nucleic acids research, 33(suppl 1):D514-D517, 2005.

Ada Hamosh, Alan F Scott, Joanna S Amberger, Carol A Bocchini,
and Victor A McKusick. Online mendelian inheritance in man
(omim), a knowledgebase of human genes and genetic disorders.
Nucleic acids research, 33(suppl 1):D514-D517, 2005.

Robert Hoffmann. A wiki for the life sciences where authorship
matters. Nature genetics, 40(9):1047-1051, 2008.

Trey Ideker and Roded Sharan. Protein networks in disease. Genome
research, 18(4):644—652, 2008.

Jieun Jeong and Jake Y Chen. Techniques for prioritization of
candidate disease genes. Computational Intelligence and Pattern
Analysis in Biology Informatics, 13:309, 2010.

Minoru Kanehisa, Michihiro Araki, Susumu Goto, Masahiro Hat-
tori, Mika Hirakawa, Masumi Itoh, Toshiaki Katayama, Shuichi
Kawashima, Shujiro Okuda, Toshiaki Tokimatsu, et al. Kegg for
linking genomes to life and the environment. Nucleic acids research,
36(suppl 1):D480-D484, 2008.

Sebastian Kohler, Sebastian Bauer, Denise Horn, and Peter N Robin-
son. Walking the interactome for prioritization of candidate disease
genes. The American Journal of Human Genetics, 82(4):949-958,
2008.

Andrea Lancichinetti, Filippo Radicchi, and José J Ramasco. Statis-
tical significance of communities in networks. Physical Review E,
81(4):046110, 2010.

Jonas B Laurila, Nona Naderi, René Witte, Alexandre Riazanov,
Alexandre Kouznetsov, and Christopher JO Baker. Algorithms and
semantic infrastructure for mutation impact extraction and grounding.
BMC genomics, 11(Suppl 4):S24, 2010.

Duc-Hau Le and Yung-Keun Kwon. Gpec: a cytoscape plug-in
for random walk-based gene prioritization and biomedical evidence
collection. Computational biology and chemistry, 37:17-23, 2012.
Feng Luo, James Z Wang, and Eric Promislow. Exploring local
community structures in large networks. Web Intelligence and Agent
Systems, 6(4):387-400, 2008.

Melanie Mitchell.
Press, 2009.

Complexity: A guided tour. Oxford University

197

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Yves Moreau and Léon-Charles Tranchevent. Computational tools for
prioritizing candidate genes: boosting disease gene discovery. Nature
Reviews Genetics, 13(8):523-536, 2012.

Saket Navlakha and Carl Kingsford. The power of protein interac-
tion networks for associating genes with diseases. Bioinformatics,
26(8):1057-1063, 2010.

Martin Oti and Han G Brunner. The modular nature of genetic
diseases. Clinical genetics, 71(1):1-11, 2007.

Martin Oti, Berend Snel, Martijn A Huynen, and Han G Brunner.
Predicting disease genes using protein—protein interactions. Journal
of medical genetics, 43(8):691-698, 2006.

Arzucan Ozgiir, Thuy Vu, Giines Erkan, and Dragomir R Radev.
Identifying gene-disease associations using centrality on a literature
mined gene-interaction network. Bioinformatics, 24(13):1277-i285,
2008.

Rosario M Piro and Ferdinando Di Cunto. Computational approaches
to disease-gene prediction: rationale, classification and successes.
FEBS Journal, 279(5):678-696, 2012.

Mahbubur SM Rashid, Hasan Jamil, Raquel Hontecillas, Josep
Bassaganya-Riera, et al. Gene regulatory network reveals oxidative
stress as the underlying molecular mechanism of type 2 diabetes and
hypertension. BMC medical genomics, 3(1):45, 2010.

Matteo Re and Giorgio Valentini. Genes prioritization with respect to
cancer gene modules using functional interaction network data. 2011.

Peter N Robinson, Sebastian Kohler, Sebastian Bauer, Dominik
Seelow, Denise Horn, and Stefan Mundlos. The human phenotype
ontology: a tool for annotating and analyzing human hereditary
disease. The American Journal of Human Genetics, 83(5):610-615,
2008.

Francisco A Rodrigues, Guilherme Ferraz de Arruda, and Luciano
da Fontoura Costa. A complex networks approach for data clustering.
arXiv preprint arXiv:1101.5141, 2011.

Marilyn Safran, Irina Dalah, Justin Alexander, Naomi Rosen,
Tsippi Iny Stein, Michael Shmoish, Noam Nativ, Iris Bahir, Tirza
Doniger, Hagit Krug, et al. Genecards version 3: the human gene
integrator. Database, 2010:baq020, 2010.

Nicki Tiffin, Miguel A Andrade-Navarro, and Carolina Perez-Iratxeta.
Linking genes to diseases: its all in the data. Genome Med, 1(8):77,
2009.

Marc A van Driel, Jorn Bruggeman, Gert Vriend, Han G Brunner, and
Jack AM Leunissen. A text-mining analysis of the human phenome.
European journal of human genetics, 14(5):535-542, 2006.

Oron Vanunu, Oded Magger, Eytan Ruppin, Tomer Shlomi, and
Roded Sharan. Associating genes and protein complexes with
disease via network propagation. PLoS computational biology,
6(1):1000641, 2010.

Mahadevan Vasudevan and Narsingh Deo. Efficient community
identification in complex networks. Social Network Analysis and
Mining, 2(4):345-359, 2012.

Dennis P Wall, Rimma Pivovarov, Mark Tong, Jae-Yoon Jung, Vin-
cent A Fusaro, Todd F DeLuca, and Peter J Tonellato. Genotator: a
disease-agnostic tool for genetic annotation of disease. BMC medical
genomics, 3(1):50, 2010.

David Warde-Farley, Sylva L Donaldson, Ovi Comes, Khalid Zuberi,
Rashad Badrawi, Pauline Chao, Max Franz, Chris Grouios, Farzana
Kazi, Christian Tannus Lopes, et al. The genemania prediction server:
biological network integration for gene prioritization and predicting
gene function. Nucleic acids research, 38(suppl 2):W214-W220,
2010.

Xuebing Wu, Rui Jiang, Michael Q Zhang, and Shao Li. Network-
based global inference of human disease genes. Molecular systems
biology, 4(1), 2008.

Jianzhen Xu and Yongjin Li. Discovering disease-genes by topolog-
ical features in human protein—protein interaction network. Bioinfor-
matics, 22(22):2800-2805, 2006.

Wei Yu, Marta Gwinn, Melinda Clyne, Ajay Yesupriya, and Muin J
Khoury. A navigator for human genome epidemiology. Nature
genetics, 40(2):124-125, 2008.



