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Abstract—Heterogeneous data resources in biomedicine be-
come available both in structured and unstructured formats,
such as scientific publications, healthcare guidelines, controlled
vocabularies, and formal ontologies. Bridging the gaps among
these heterogeneous data is useful to discovery implicit knowl-
edge. To make this happen, efficient computational approaches
are a necessity for applications in such a knowledge- and data-
intensive domain. In this paper, we first define a particular
task, relation alignment, which is to identify textual evidences
for biomedical ontologies. Then, we investigate two parallel ap-
proaches for this task over distributed systems and present the
details of their implementations. Moreover, we characterize the
performance of our methods through extensive experiments,
thereby allowing researchers to make a more informed choice
in the presence of large-scale biomedical data.

Keywords-Biomedical ontology; relation alignment; dis-
tributed computation; high performance; big data

I. INTRODUCTION

Biomedicine is a knowledge intensive discipline, where

knowledge is often encoded in multiple resources, such as

controlled vocabulary thesaurus (MeSH1), ontologies (Gene

Ontology2, Snomed CT3), and more generally in the form

of textual resources such as scientific publications and

healthcare guidelines. These heterogeneous data often have

overlaps but in different representations (formal or textual).

For example, Figure 1 gives a formal representation of the

concept Baritosis from Snomed CT, and Wikipedia also

has the sentence conveying a piece of similar knowledge:

“Baritosis is a benign type of pneumoconiosis, which is

caused by long-term exposure to barium dust”. Moreover,

different resources also form a good complement of each

other. For example, the knowledge in Figure 1 does not cover

that in the sentence: “Being a benign condition, baritosis

neither interferes with lung function nor causes symptoms

other than a mild cough”. By exploiting the heterogeneous

big data from different resources, it is expected that we can

discovery implicit meaningful knowledge. In this paper, we

are interested in a special correspondence between structured

(ontology) and unstructured (text) data, namely tracing tex-
tual evidences of biomedical ontology, that is, for instance,

1http://www.ncbi.nlm.nih.gov/mesh
2http://www.geneontology.org/
3http://www.ihtsdo.org/snomed-ct/

Figure 1. The structured knowledge about Baritosis from Snomed CT

to find the correspondence between the formal knowledge

given in Figure 1 and the sentences mentioned above.

Textual evidences are interesting to be related with formal

ontologies for several reasons. First, creating and extend-

ing formal ontology is an expensive process. In contrast,

narrative texts, such as medical records, health news, and

scientific publications, contain rich information that is very

useful to augment a knowledge base [1][2][3][4]. Second,

once a natural language sentence is annotated with ontolog-

ical labels, search engines can answer queries by displaying

succinct structured data [5] or perform advanced search

according to the semantic labels (e.g. GoPubMed4).

The increasing biomedical resources naturally form a

data-intensive environment, which makes the construction

of links among different resources difficult. On one hand,

the traditional manual labeling is costly thus not practical.

On the other hand, computing potential links over large

datasets becomes heavily time consuming. To this end, in

this paper, we study and explore efficient approaches to

identifying links between texts and formal ontology. This

is done by computing the relation alignment in parallel over

distributed systems. The essential idea is to formalize the

relation alignment as join operations, and then apply existing
distributed join frameworks to implement the alignments.

Relation Alignment. Take Figure 1 as an example. Each line

4http://www.gopubmed.org/web/gopubmed/
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starting with “Baritosis” is a relationship given in Snomed

CT ontology, in the form of a|r|b, where a, b are two concept
names and r is the linking relation, called a pivot relation.
For any relation r, the task of relation alignment for r is
to identify textual fragments, called textual evidences, that
indicate a relationship having r as its pivot relation. For
example, the textual fragment “Baritosis is a benign type of

pneumoconiosis” given in Table I can be aligned with the

relationship “Baritosis | isa | Pneumoconiosis due to inor-

ganic dust” in Figure 1. Thanks to big textual data available

in many applications, regardless of some noisy alignments, it

has been confirmed by many studies [6][7][3][4][5] that the

aligned textual fragments can produce meaningful linguistic

features to recognize the corresponding pivot relation r.
To realize relation alignment, we perform the following

preprocessing steps on textual data. We first recognize all

concept names from a given textual sentence, and then

label the textual fragments with biomedical concepts5, as

shown in Table I, where the integer ids are the inner simple

representation of Snomed CT for concepts. Next, possible

concept id pairs for different phrases are extracted from

the annotated sentences, such as (50076003,40122008) and

(50076003,55727002) for the annotated sentence in Table I.

For each concept pair (a, b) and its corresponding phrases
s1 and s2, we finally check whether there is a relationship
a|r|b in a given ontology with a pivot relation r. If it is the
case, the textual fragment between s1 and s2 is returned as
the textual evidence for the relation r, and the sentence is
called aligned with r.
In the Web scenario, textual resources are increasing

dramatically. Meanwhile, the creation of structured semantic

data also comes with a high speed, such as the biomedical

ontology portal6, linked data7 and Wikidata8. It can be time

consuming to align such large amount of data within a

realistic time, even if the relation alignment seems a simple

operation. In fact, suppose that there are L sentences with

M annotations on average and N ontological relationships,

the relation alignment needs O(LM2N) matchings. How-
ever, this can be improved via distributed computation with

optimized management of ontologies, the intensively visited

data in relation alignment.

Contribution. In this paper, we investigate two distributed
approaches with target for efficiently extracting textual

evidences over biomedical ontologies. We summarize the

contributions of this paper as below:

• We formulate the relation alignment problem as join

operations and propose two parallel solutions for fast

computing the relation alignment over distributed ar-

chitectures.

5In our implementation, this is done by invoking the tool Metamap [8].
6bioportal.bioontology.org/
7linkeddata.org/
8www.wikidata.org/

Table I
AN EXAMPLE SENTENCE WHOSE PHRASES ARE ANNOTATED BY

SNOMED CT CONCEPTS BY METAMAP, WHERE “–” MEANS NO
ANNOTATION AVAILABLE FOR THE CORRESPONDING PHRASES.
MULTIPLE ANNOTATIONS HAPPEN DUE TO THE OVERLAPPING

SEMANTICS OF THE CONCERNED CONCEPTS.

Sentence Phrases Ontology Annotation

Baritosis 50076003
is –

a benign type 30807003 | 261664005
of pneumoconiosis, 40122008

which –
is –

caused 23981006 | 134198009
by long-term exposure 71677004 | 24932003

to barium dust. 55727002

• We present the detailed implementations of our ap-

proaches and evaluate their performance over a com-

modity cluster with 192 cores and datasets up to 400

million tuples.

• We characterize the performance of our implementa-

tions through extensive experiments. Meanwhile, it is

highlighted that our hash-based alignment method can

compute alignments over a very large dataset (100

million tuples) in one minute.

The rest of this paper is organized as follows: In Sec-

tion II, we introduce our parallel alignment approaches

and present their detailed implementations. In Section III

we provide a quantitative evaluation of our algorithms. We

report on related work in Section IV while in Section V we

conclude the paper outlining plans for future work.

II. OUR APPROACHES

In this section, we first formalize the alignment problem.

Then, we introduce two efficient parallel alignment methods:

the hash-based alignments and the duplication-based align-
ments, to efficiently improve the alignment performance in
the presence of large-scale biomedical data.

A. Problem Formulation

We are given a set of concept relationships R and an

ontology annotation S, where R is in the form of a|r|b for
two concepts a, b and a relation r, and S is in the form of

a|si:sj |b, where a, b are the annotations and si as well as sj
are the extracted phrases. Based on the relation alignment

problem as defined, the alignment is to find all the tuples

<R,S> ∈ R × S such that R.a = S.a and R.b = S.b. In
Database lingo, R and S are two relations.
As a join can facilitate the combination of two relations

based on a common key, if we consider the terms (keys)

a, b in each tuple of R and S as a key entity (e.g. c), then
the above alignment progress becomes to a join operation.

Namely, R �� S where R.c = S.c. In such scenario, the
process to trace the textual evidence of biomedical ontology

can be computed by implementing the joins between the
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Algorithm 1 Hash-based Alignments
Hash-Redistribution:

1: for each node in current system parado {
2: Initialize A:array[array[tuple]](n),

B:array[array[tuple]](n)
3: for all tuples R ∈ R do
4: des ← hash(R.a)
5: A(des).add(R)
6: end for
7: for all tuples S ∈ S do
8: des ← hash(S.a)
9: B(des).add(S)
10: end for
11: for i← 0..(n− 1) do
12: Send A(i) to A′(i)(here.id),

B(i) to B′(i)(here.id) at node i
13: end for }

Local Alignments:
14: for each node in current system parado {
15: Initialize T_r:hashmap[a,(b,r)]
16: for all received tuples R′ ∈ A′(here.id) do
17: Add R′ in T_r
18: end for
19: for all received tuples S′ ∈ B′(here.id) do
20: value ← T_b.get(S’.a).value)
21: if (value �= null) ∧ (S′.b = value.b) then
22: Output < value.r, S′.si, S′.sj >
23: end if
24: end for }

terms in the concept relationships and ontology annotation.
In the following, we mainly focus on how to devise efficient

parallel algorithms to support this operation.

B. Parallel Processing

The hash-based and duplication-based join framework is

widely used in various parallel join algorithms [9][10][11],

therefore we can apply such two approaches to compute our

alignments as well. We will explain how to compute the

relation alignments in parallel from that basis. To better un-

derstand the detailed process, we consider following tuples

at each relation:

R = { 1|r1|2, 2|r2|5 }
S = { 1|s1:s2|2, 2|s2:s4|4, 1|s1:s3|3, 2|s2:s5|5 }

As we utilize a distributed method for the input data, the data

is first divided into a number of equal-size chunks and then
assigned as input for processing on separate computation

nodes. For an example two-node (n = 2) system, the first
half tuples of each relation are assigned to the first node and

others are for the second node.

Hash-based Alignments. In the hash-based framework, the
parallel alignment algorithm is described in Algorithm 1.

There, we divided our alignments into two phases, namely

hash-redistribution and local alignments.
As shown in lines 3-10 of Algorithm 1, all tuples inR and

S at each node (note that n is the number of computation

Algorithm 2 Duplication-based Alignments
Duplication:

1: for each node in current system parado {
2: for all tuples R ∈ R do
3: Send R to all other computation nodes
4: end for }

Local Alignments:
5: for each node in current system parado {
6: Initialize T_r:hashmap[a,(b,r)]
7: for all received tuples R′ ∈ _A(here.id) do
8: Add R′ in T_r
9: end for
10: for all tuples S ∈ S do
11: value ← T_r.get(S.a).value)
12: if (value �= null) ∧ (S.b = value.b) then
13: Output < value.r, S.si, _S.sj >
14: end if
15: end for }

nodes/cores, here means the id of current node and we use
parado to mean do in parallel) are firstly grouped according
to the hash values of one of their join keys respectively. Here,

we choose the term a as the join key for both relations. Then,
the grouped tuples are pushed to the corresponding remote

places for local alignment. We use the synchronization at

the end of the first phase to guarantee the completion of the

data transfer at each node. With a hash function based on

the modulo of number of computation nodes n, we have the
following tuples at each node after redistribution:

node 1 node 2
1|r1|2 1|s1:s2|2 2|r2|5 2|s2:s4|4

1|s1:s3|3 2|s2:s5|5

Once the grouped tuples have been transferred to the

appropriate remote nodes, the local alignment can com-

mence. Line 14-24 of Algorithm 1 presents the details of

this process. A local HashMap T_r is built based on the
received tuples at first. The key is the term a and the value is
the pair of b and r. Then, all received tuples of S are looked
up over T_r to retrieve the matched values. If a value exists
and also has the same term b as the looked tuples, then a
responsible results will be formulated. All these processes

take place in parallel at each node, and the whole alignment

process terminates when all individual nodes terminate.

As we redistribute all tuples among the processors based

on a hash function, the potentially matched tuples will be

co-located on the same node, checking the two keys at each

node using a conventional alignment method, we can easily

get the final outputs. Thus, after execution, we have:

node 1 output < r1, s1, s2 >
node 2 output < r2, s2, s5 >

Duplication-based Alignments. The duplication-based dis-
tributed alignment method is shown in Algorithm 2. This

approach can be also divided into two phases: duplication,
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local alignments. The first phase just simply duplicates

(broadcasts) the tuples of Ri at each node to all other nodes.

This means that, after the broadcast, the composed relation

Rk (k ∈ [1, n]) at each node will be equal to the full input
R, namely, Rk =

⋃n
i=1 Ri = R. Therefore, we have the

following tuples at each node after the duplication:

node 1 node 2
1|r1|2 1|s1:s2|2 2|r2|5 2|s2:s4|4
2|r2|5 1|s1:s3|3 1|r1|2 2|s2:s5|5

The following phase, as shown in lines 5-15 of Algo-

rithm 2, is very similar to the second phase of the hash-

based implementation. For example, the lookups for local

tuples in R will commerce once the in-memory hash table

of the received tuples R is created.

III. EXPERIMENTAL EVALUATION

This section presents a comparative quantitative analysis

of the proposed approaches. We first introduce the bench-

mark scenarios and then present the detailed experimental

results.

A. Benchmark Scenarios

We use 16 IBM servers with each containing two 6-core

Intel Xeon X5679 processors clocked at 2.93 GHz, 128GB

of RAM and a single 1TB SATA hard-drive, connected

using Gigabit Ethernet. The operating system is Linux kernel

version 2.6.32-220 with gcc version 4.4.6. We implemented

our approaches using the parallel language X10 [12] with

version 2.3 and compiled the codes to C++.

As our extracted real datasets are relative small (because

of the system limitation on the pre-processing of ontology
annotation), to evaluate our parallel alignment approaches
over large datasets, we create some synthetic datasets, while

maintain some of their characteristics closed to the real data

(e.g. the format). The details of our test data is given in

Table II, with bold font indicating default values. We are

interested in how efficient the presented two approaches are,

and how the utilized system resources (namely computation

nodes) and the alignment workloads impact their perfor-

mance, therefore, we focus on the following four potential

factors in our evaluations:

(1) Number of nodes: To evaluate the scalability of our
proposed methods and check their efficiency on a distributed

system, we vary the number of processing cores for each

test, from 12 cores (1 node) up to 192.

(2) Cardinality: To see how the performance changes with
increasing dataset size, similar as the evaluation works on

joins [13][14], we just fix the cardinality of relation R, to 25
million, and varying the |S | from 25 million to 400 million,

a number which is extreme big for the available annotation
pairs. As the skew handling is beyond the scope of this

work, we just keep the data uniform distributed based on

their first join key a as stated previously.
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Figure 2. Runtime by varying the number of computation cores
(|S |=100M).

(3) String pair length: String pairs <si, sj> in each tuple
S of S are always longer than the join keys (long integers),

which could result heavy network communication during

the redistribution. In the meantime, transferring such strings

normally needs extra serialized/deserialized processing in

a distributed environment, which could bring heavy local

computation. This means that the longer the string pairs are,

the worse the performance could be. To check the detailed

effects of this factor, we varying the responsible length from

9 bytes to 128 bytes. We set 36 bytes as the default value

from the basis of our statistics over the real datasets.

(4) Alignment rate: We define the alignment rate as the
ratio of alignment tuples in the relation R. As the cost of
local lookups over built hashmap for each tuple S ∈ S could
be different in the cases of alignments and non-alignments

(because we have to perform double key checking in our

alignments), we exam this difference by varying the value

of the rate in our tests, from 0 to 100%, and choose 50% as

the default value for a general case.

For all the experiments, to focus on the core performance

of our implementation, we only count the number of final

alignments, but do not actually output results. Moreover, we

record the mean value based on three measurements and we

empty the file system cache between tests to minimize the

effects of caching by the operating system.

B. Experimental Results

Scalability. We evaluate the scalability of two proposed
implementations by varying the number of processing cores

over the default dataset, from 12 cores (1 node) to 192,

and present the results in Figure 2. It can be seen that

the runtime of the hash-based method generally scales well

with increasing the number of cores, showing the efficiency

of the parallel implementation. Here, we highlighted that,

with the hash-based method, we can compute the alignments

over 100 million tuples in one minute (using 192 cores).

In comparison, the time cost of the duplication approach
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Table II
DETAILS OF THE TEST DATASETS

Factors String Pair Length (Byte) Alignment Rate
Cardinality

Concept Relationships R Annotation Pairs S
Datasets 9, 18, 36, 72, 128 0, 20%, 50%, 80% 100% 25M 25M, 50M, 100M, 200M, 400M
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Figure 3. Runtime by varying the number of annotation pairs (192 cores).
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Figure 4. Runtime by varying the length of string pairs in S (192 cores).

increases with the number of nodes, which is out of our ex-

pectation. The possible reason is that the size of the concept
relationships R is large, broadcasting such data around the

network results very heavy network communication, and the

responsible overhead becomes larger than the benefits from

the distributed implementation.

Cardinality. The results of the cardinality experiments are
demonstrated in Figure 3. We can see that the runtime of

hash-based method increases sharply with increasing the

number of annotation pairs. In comparison, the duplication-

based approach is nearly constant. The possible reason is

that large number of annotation pairs of S needs to be

redistributed in the former method while the latter method

only needs to broadcast the concept ontologies, the number
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Figure 5. Runtime by varying the alignment rate as defined (192 cores).

of which is constant in our tests (namely 25M as shown

in Table II). Moreover, it can be also observed that the

hash-based method performs better than the duplication-

based method at first, and then become worse when the

number of annotation pairs reaches a vary big number. In

such scenarios, the redistributed cost of R and S becomes

larger then the time on broadcasting R. This indicates that
duplication-based method should be chosen for processing a

very large data S while hash-based method should be used

when processing relative small datasets.

String Length. We record the runtime of the two methods
by varying the length of the string pairs. The results are

presented in Figure 4. We can see that the runtime of the

hash-based method is always increasing with increasing the

length. This is consistent with our assumption, because the

serialization/deserialization operation as well as long string

transferring impacting the performance. In comparison, the

duplication-based method is nearly constant. The reason is

the same as the reason described above, that the broadcast

tuples are fixed. Furthermore, it can be also seen that the

runtime of the hash method is always smaller than the

duplicated one in this test. As the extracted phrases in real

datasets are normally not so long, in such scenarios, hash-

based approach will be a better choice for computing the

alignments.

Alignment Rate. Finally, we examine how alignment rate
impacts the performance for each algorithm. The responsible

results are demonstrated in Figure 5. There, we can see that

the runtime of both algorithms nearly keep constant, and

does not increase with the increment of the alignment rates,
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which is conflict with our previous assumption. This could

be that the computation cost of alignment tasks is very light-

weighted, compared with cost on network communication,

because the whole time cost is composed by the time on

data movements and local lookup in our implementations.

The results also imply that reducing the cost on network

communication will more meaningful than optimization lo-

cal alignments when processing large biomedical datasets.

IV. RELATED WORK

Relation alignment has been proposed in the framework

of distant supervision. Distant supervision has proven a

successful approach for information extraction in a big

data environment because no supervised corpus is needed

when a formal knowledge base is available with the sample

relationships we want to extract. The existing efforts have

been put on applying relation alignment to different tasks,

including populating a knowledge base with relationships

[6][7], formalizing biomedical ontologies [3][4], and dis-

covering new attributes of given objects [5]. To the best

of our knowledge, unlike this paper, there is little work

on high performance computing of relation alignment. We

consider it as a necessary topic as the dramatic increase of

un- and structured biomedical information available on the

Web. The experimental results show that our approach can

significantly accelerate automatic generation of labeled data

by a distributed management of biomedical ontologies.

In terms of joins, the efficient parallelisation of such

operations over distributed machines becomes increasingly

desirable as applications grow in scale. Up till now, the

hash-based method is widely used and various distributed

join algorithms have been proposed [15]. In contrast, the

duplication-based approach is not so popular, but also

adopted in some work [16], the performance of which is

heavily rely on underlying high-speed networks. Moreover,

different techniques, such as dynamic scheduling [17] and

skew handling [14][18], have been applied in the implemen-

tation of distributed joins to improve the performance. We

will investigate and apply such methods so as to achieve even

higher performance under different alignment workloads.

V. CONCLUSIONS

In this work, we have formulated the problem of relation
alignment, which is to identify textual evidences for biomed-
ical ontologies. We have proposed two parallel approaches

to fast computing the alignment over distributed systems. We

ran experiments over different data sizes and characterized

the performance of our implementations. The results let

us have a more informed choice when processing massive

biomedical data.

Current work lies in extending this approach to rapid

ontology annotation extraction methods to achieve very high

throughputs of relation alignment in our real system. Our

long term goal is to develop a highly scalable distributed

analysis framework for bridging large-scale bio-information

textual and formal data.
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