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Abstract—Biological network inference is a crucial problem
to solve in Bioinformatics as most of biological process are
based on biomolecular interactions. Many researchers have
worked on especially the inference of gene regulatory networks
where a node and edge represent a gene and regulation
relationship respectively assuming that a gene can regulate
another gene indirectly. However, a gene expression level can
be influenced by not only genes and proteins but also other
biological factors. Therefore, the inference could be more
effective if those factors are considered in gene regulatory
network inferences. In this paper, we propose an integrative
approach to infer gene regulatory networks where a gene can
be regulated by not only gene and but also DNA Methylation
and copy number variation. It is assumed that a gene can
be directly regulated by a single DNA Methylation and copy
number variation at most. The simulation results show that
our method outperforms popular and state-of-the-art methods
of biological network inference. In addition, we applied the
proposed method to psychiatric disorder data. The inferred
networks provide the relationships within a set of genes that
are more likely to be regulated by DNA Methylation and copy
number variation of the genes.

I. INTRODUCTION

Biological process is based on gene expression programs

that regulate the transcription of thousands of genes. Un-

derstanding gene regulation is crucial to gain insights in

biological processes of disease. In order to understand gene

regulatory mechanism, a number of researches have been

conducted by using high-throughput microarray expression

data. Diverse computational and statistical approaches [1]

has been proposed to decipher regulatory relationships be-

tween genes. However, inferring Gene Regulatory Network

(GRN) is still a challenge because gene expressions are

regulated by many complex factors such as copy number

variation (CNV) and DNA Methylation (DM) of the genes.

GRN inferences were normally based on gene expression

data only but not other data types that could be related to

gene expression. For better quality of network inference,

it is demanded to integrate heterogeneous data with gene

expression.

Figure 1: Example of DCGRN: blue, red, and black nodes

indicate DM, CNV, and gene respectively

Presently, it is known that DM could play a role in regulat-

ing gene expression but its association with gene expression

is not fully discovered yet. Since DM can prevent TF from

binding to promoter, negative correlation has been generally

observed with gene expression, but it is also discovered

that the increased DM is positively correlated with high

level gene expression in some cases [2]. CNV can also

influence gene expression level as another important factor

of gene expression. Many researches have been performed to

elucidate the association between CNV and gene expression

in target disease [3]. It is similar to DM that there are both

positive and negative correlation between CNV and gene

expression [4]. We note that these two factors can be a

direct regulator of the gene in GRN, and network inference

with CNV and DM data could perform better than gene

expression data only. To verify the potentials of DM and

CNV in GRN inference, we explore the impact of integrating

gene expression and these two factors in gene regulatory

network inference in this paper.

Gene expression data (e.g. DNA microarray) allow net-

work inference by studying the regulatory patterns between

expression levels of two genes. In order to construct a net-

work, many computational methods have been suggested in-

cluding Mutual Information (MI), Bayesian Network (BN),

and L1 regularized linear regression (Lasso). These popular

methods have their own advantages and disadvantages. For

example, MI is fast and simple limited to indirected net-
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Figure 2: Overview of DCGRN inference for psychiatric disorder

work. BN provides directed acyclic network inference but

requires high computational cost and a number of samples.

In this paper, we employed Lasso-based network inference

complemented advantages without indirection limitation and

computational weakness. Given a network model where each

node represents gene, DM, and CNV, Lasso gives sparsity

in network inference (the gene regulatory network with

DM and CNV is referred as to DCGRN in this paper).

The strength of sparsity is determined by performing cross

validation and edge weight is optimized by using coordinate

descent algorithm. In addition, DCGRN model assumes that

DM and CNV can linearly regulate gene expression but

not be regulated by genes. The example of DCGRN is

described in Figure 1. The algorithm we proposed is also

based on statistical test to select significant edges from DN

and CNV to gene. In the experimental results section, the

performance of the method was tested with synthetic DC-

GRNs and simulated data sets. DCGRN model and Lasso-

based inference method are applied to psychiatric disorder

data that consist of CNV, DM, and two replications of gene

expression. Figure 2 describes the procedures of DCGRN

inference. First, two DCGRNs are independently inferred

by using two replication data and common DM and CNV.

Secondly, two DCGRNs are integrated by including only

edges that two networks commonly have. Lastly, significant

edges are selected the integrated network by statistical test

and validated by using related literatures and database. Final

results provide potential biomarkers associated with mental

disorders as well as regulatory relationships between gene,

DM, and CNV.

There are three contributions in this work. First, DCGRN

is the first network model for the integration of DM, CNV,

and gene expression. DCGRN provides not only gene regu-

latory relationships but also effect of DNA methylation and

copy number alterations on gene expression. Secondly, the

lasso-based method to infer DCGRN is evaluated by using

simulation data and perform effectively. Lastly, our network

model and method is applied to psychiatric disorder data and

demonstrate the ability to provide regulatory relationships

of biomarkers by integrating DM and CNV with gene

expression data.

II. METHOD

A. DCGRN Model

DCGRN is a directed network that encodes the regulatory

relationships over a set of genes, DMs, and CNVs. Let

X ∈ R
m×n denote the matrix of gene expression levels

of m genes and n samples. The matrix D ∈ R
m×n and

C ∈ R
m×n also denotes DMs and CNVs of the genes.

The three data matrix are defined as X = [x1, x2, . . . , xm],
D = [d1, d2, . . . ,dm], and C = [c1, c2, . . . , cm] where
xi, di, ci are ith row vector of data matrix X , D, and C
respectively. DCGRN is defined as follows.

xi = biX + wiD + fiC + μi + εi, (1)

where bi, wi, and fi denotes ith row vector of adjacency ma-
trix B∈Rm×m, W∈Rm×m, and F∈Rm×m respectively;μi
is a model bias; and εi is a residual. As we assume there
is no self-regulation (self-loop edge), bii = 0, ∀i = 1, ...,m
where bii denotes ith element of bi. It is also assumed that

there is no cycle. Especially, the case of two nodes cycle

(i.e. both bij and bji are non-zero) is not considered in DC-
GRN. The parameter bij represents the activation(positive)
or deactivation(negative) weight of edge from jth gene to
ith gene. If bij is zero, there is no edge from from jth gene
to ith gene. In addition, it is assumed that a gene can be
directly influenced by only DM and CNV that belong to

the gene but no other genes. It means that only diagonal

elements of D and C can be non-zero. wii and fii represent
the regulatory weight of DM and CNV of ith gene. Our goal
in this model is to find B,W , and F that best fit to observed
gene expression, DM, and CNV data. In other words, the

problem is to estimate bi, wi, and fi that minimize εi. After
the bias is removed by mean centering, (1) can be restated

in a least square minimization problem defined as

min
bi,wi,fi

||xi − biX − wiD − fiC||22 (2)

where || · ||2 denotes 2 norm.
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B. Sparse DCGRN

Regression tends to include as many genes as possible

to explain the expression level of target gene. In order to

avoid the overfitting and exclude most of edges that are not

most likely to be true edge, many sparse linear models have

been used in gene regulatory network inference. The sparse

penalty forces bij to be zero when gene i and regulator j
are not more likely interacting than other possible regulator

genes. For Sparse DCGRN (SDCGRN), 1 norm sparse

penalty is also applied to all edges (B,W,F) as following:

min
bi,wi,fi

||xi − biX − wiD − fiC||22
+ λ1||bi||1 + λ2||wi||1 + λ3||fi||1 (3)

where λs are penalty weights. Since only diagonal elements
of W and F are non-zero, (3) can be re-expressed as

L(βi) = min
βi

||xi − βiY ||22 + λ||βi||1 (4)

where

βi = [bi1, bi2, . . . , bii−1, bii+1, . . . , bim, wii, fii], (5)

Y = [x1, x2, . . . , xi−1, xi+1, . . . , xm, di, ci]. (6)

Since the objective function (4) is convex, βi can be

optimized by using coordinate descent algorithm given λ.
To find the optimal βi, the derivative of (4) with respect to

βij is induced as follows.

∂L/∂βij =− yj(x
�
i − Y �β�i ) + λ∂βij

||βi||1 (7)

=− yj(x
�
i − Y �(−j)β

�
i(−j) − y�j βij) + λ∂βij

||βi||1
(8)

where Y(−j) denotes matrix Y whose jth row is removed,

and yj is jth row vector of Y . Then, (8) can be simplified
to

−cij + aijβij + λ∂βij
||βi||1 (9)

where cij denotes yj(x�i − Y �(−j)β
�
i(−j)) and aij denotes

yjy�j . Given a λ, βij can be calculated by using the coordi-
nate descent algorithm based on subgradient as following:

βij =

⎧⎪⎨
⎪⎩

(−cij − λ)/aij if cij < -λ,

0 if |cij | ≤ λ,
(−cij + λ)/aij if cij > λ.

(10)

In Algorithm 1, the overall procedure to solve (4) is de-

scribed.

C. Tests of Statistical Significance for Edge Selection

Although the sparsity is applied to βi, wii and fii (i.e.
βim and βim+1) could be non-zero with small coefficient

value as false positive regulation. In order to reduce the

false positive rate of inferred edges from DM and CNV to

corresponding gene, wii and fii are re-estimated when they
are non-zero. First, a vector β′i is set with only non-zero

Algorithm 1 Sparse DCGRN algorithm
procedure SDCGRN(xi, Y , λ, ε)

initialize βi to zero vector

while err > ε do
βold
i ← βi

for j ← 1,Ms do
Update βij via (10)

end for
err ← ||βold

i − βi||2
end while
return βi

end procedure

coefficients of the estimated βi, then ordinary least square
is applied to β′i. The corresponding β

′
ij for non zero wii or

fii is statistically tested whether coefficient might be zero
(i.e. null hypothesis). If p-value of t-score in t distribution
is not less than 0.0001 as a significance level, we set the

coefficient to zero.

D. DCGRN Inference

DCGRN inference consists of three steps. First, initial

network is inferred by using SDCGRN. Secondly, all edges

from DM and CNV to gene in the sparse network are

statistically tested. Lastly, SDCGRN is performed again with

only non-zero elements of B, W , and F of second step.

Then, non-zero coefficient element of βi is re-estimated by

applying ordinary least square since SDCGRN is only to

select edges like feature selection but not estimate coefficient

value. The re-estimated B is finalized by removing edges

whose coefficient value is less than heuristically predefined

threshold. Although it is assumed that there is no two node

cycle, the final result could include the cycle as DCGRN

inference does not have the ability to avoid the cycle. In

addition, the effect of third step depends on how many genes

are regulated by DM and CNV, and it is assumed that a gene

can be regulated by only a single DM and CNV of the gene.

The indirect regulation by DM and CNV of other genes is

not considered in DCGRN inference.

III. EXPERIMENTAL RESULTS

A. Simulation Studies

1) Random network and synthetic data sets: The evalu-
ation of the DCGRN inference is performed by simulations

based on random network and synthetic data.m indicates the

number of genes and is set to 10, 20, and 30.m×m matrix B
is initialized to zero matrix, then elements of B are randomly
selected avoiding any cycle. The parameter EG decides

the number of inbound edges per gene on average, which

means higher EG make the network more complex. The

selected bij has random coefficient value that is uniformly

distributed over 0.5∼1 or -0.5∼-1. Similarly W and F are

initialized to zero matrix, then diagonal elements (wii and
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(a) m=10,EG=1,DC=0.3 (b) m=20,EG=1,DC=0.3

Figure 3: Example of random networks with different pa-

rameter settings: m, EG, and DC indicate the number of

genes, average number of edges per node, and percentage

of nodes that have DM and CNV respectively.

fii) are randomly selected. The parameter DC indicates

the percentage of nodes that are regulated by DM and CNV.

For example, if m and DC are 10 and 0.3 respectively, three
(10×0.3) DMs and CNVs regulate corresponding genes (i.e.
three diagonal elements of W and F are non-zero). The

selected wii has random value like bij , and selected fii is
set to 1. dij has random value that is uniformly distributed

over 0∼1. cij is randomly set as 0, 1, 2, 3, or 4 with the
probabilities 0.03, 0.07, 0.87, 0.02 and 0.01, respectively. X
is generated by calculating X = (I−B)−1(WD+FC+E)
where Eij is generated from Gaussian distribution with zero

mean and variance 0.01. The number of samples for each

network size is N=100, 200, 300, 400, 500. EG is set to

1, 2, and 3. DC is set to 0.1, 0.3, 0.5, 0.7, and 0.9. Given

data X , D and C, B̂, Ŵ , F̂ are inferred, and then they are

compared to true edges of B, W , F . Figure 3 displays the
examples of random network with different parameters, m,
EG, and DC.

2) Evaluation results: For the evaluation, true positive
(TP), false positive (FP), true negative (TN), and false

negative (FN) edges are counted to measure the accuracy

criteria, True Positive Rate (TPR) and False Discovery Rate

(FDR) The performance of proposed method are compared

to other network inference methods as follows.

• GRN: Lasso without DM and CNV

• MI: edge is scored by mutual information
• CLR: context likelihood relatedness [5].
• ARACNE: [6]
• GENIE3: top rank in DREAM 4 [7]

• DCGRN: the proposed method

Figure 4 is ROC curves to measure the performance of

network inference in different parameters of network size

and complexity (DC and number of samples are fixed to 0.3
and 100 respectively). In all parameter settings, the proposed

method outperforms other methods. The performance of all

methods is much better in EG=1 (Figure 4(a), (b)) than

EG=3 (Figure 4(c), (d)) because indirect regulation could be

more in more complex network. Regarding to network size,

the performance of all methods tends to increase when the

network size increases because TN is likely to be increase
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(b) m=30,EG=1,DC=0.3
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(c) m=10,EG=3,DC=0.3
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(d) m=30,EG=3,DC=0.3

Figure 4: ROC curve of the propsed method and compared

methods with different parameter settings: m, EG, and DC
indicate the number of genes, average number of inbound

edges per node, and percentage of nodes that have DM and

CNV respectively. The number of samples is set to 100.

when the network size increases.

B. Application to Psychiatric Disorder Data

The psychiatric disorder data consists of gene expressions

(two replications), DM, and CNV data. There are 87 case

and 43 control samples measured from human brain. From

25833 genes of expression data, we selected 175 genes,

which have both corresponding CNV and DM. When a gene

is selected for a given CNV, it is assumed that a CNV

can regulate a gene if the CNV location is overlapped with

the location of the gene. In addition, if multiple genes can

belong to a CNV, the gene that has the highest correlation

coefficient with CNV is selected.

Figure 5 is the integrated network of the two replica-

tions with 16 genes that have high correlation coefficient

(>0.2)between gene and DM. There are two DMs that are
connected to genes, CSMD1 and CYP2E1. Also, there is

a CNV that is connected the gene, SLC2A3. A number of

literature support that CSMD1 and CYP2E1 are associated

with schizophrenia but there is no report about associations

with DM of the two genes [8], [9]. Although SLC2A3 is

not known as a biomarker of psychiatric disorders, it has

been reported that SLC2AS is related to brain disease, Hunt-

ington’s disease [10]. We mainly note four interconnected

genes, SELENBP1, FKBP5, CTNNA3, and SLC35F2 as

potential biomarkers for psychiatric disorders. SELENBP1

are significantly interconnected to other genes. Many studies

reported SELENBP1 as a biomarker for psychiatric disorders

[11]. FKBP5 that is connected SELENBP1 is also known
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Figure 5: The integrated network of two replication data with

16 selected genes that are high correlated with corresponding

DM and CNV. Yellow colored genes are the interconnected

biomarkers for psychiatric disorder and brain disease.

as a biomarker for Depression [12]. Another two genes,

CTNNA3 and SLC35F2, are not known as biomarker for

psychiatric disorders but brain-related disease, Alzheimers

disease [13], [14].
IV. CONCLUSION

In this paper, two biological factors, DM and CNV, are

considered as a regulator that influence gene expression.

In order to infer what DM and CNV could regulate a

gene, the novel network inference method is proposed. In

other words, our method provides gene regulatory network

where DM and CNV are involved as a regulator of gene.

The method is based on three steps of linear regression

and statistical test. To evaluate the performance of the

method, the synthetic data set are generated by using random

networks. The performance is better than state-of-the-art

methods in different parameter settings of random networks.

We also applied the method to psychiatric disorder data in

order to explore the network of genes that are likely to be

regulated by DM and CNV.
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