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Abstract—The inference of gene networks from gene expres-
sion data is an open problem due to the large dimensionality
(number of genes) and the small number of data samples typically
available, even considering the fact that the network is sparse
(limited number of input genes per target gene). In this work we
propose a method that alleviates the curse of dimensionality by
grouping predictor gene configurations in their respective linear
combination values. Each linear combination value results in an
equivalence class. In this way, the number of configurations of
predictor values becomes a linear function of the dimensionality
(number of predictors) instead of an exponential function when
considering the original configurations. The proposed method
follows the probabilistic gene networks approach which applies
local feature selection to obtain an adequate predictor gene set
for each gene. Even considering that some information from
the original configurations of predictors is lost after applying
the grouping, the results indicate that the inference with linear
grouping tends to provide networks with better topological
similarities than those obtained without grouping in cases where
the number of samples is quite limited and the inference involves
a larger number of predictors per gene.

I. INTRODUCTION

In recent years, the development of techniques such as
DNA Microarrays [33], SAGE [38] and RNA-Seq [39], has
made it possible to estimate the expression level (mRNA
concentrations) of thousands of genes simultaneously and in
several timepoints. With the availability of this data, several
methods for analyzing the dynamical evolution of the gene
expression levels have been proposed, with the goal of reverse
engineering the regulatory control mechanisms [16].

Gene expression data poses a hard challenge for statistical
analysis due to its high-dimensionality: since the typical sce-
nario involves a few dozens of experiments and thousands of
genes, the number of parameters to be estimated is several
orders of magnitude higher than the available samples. In
addition, gene expression data is inherently noisy and prone
to the scarcity of prior information about many biological
organisms [3]. Classical statistical methods are not able to
cope with this restriction, thus motivating the appearance of
methods that use additional assumptions, such as smoothness
and sparsity, and/or try to incorporate prior knowledge and
integration of other types of data sources [16], [25], [27].
Despite the availability of high volume data and the increasing
interest garnered by the subject, the inference of gene regu-
latory networks (GRN) remains an open problem [16], [35],
[21], [28], [31].

In fact, the inference of networks from gene expression
data is an inverse and ill-posed problem, in the sense that
many solutions may be capable to explain the observed data.
This makes the problem quite complex, since the number of
samples is limited and the data is subject to experimental
noises as aforementioned. The inference process requires a
good modeling framework combined with very well designed
search or learning procedures.

There are essentially two main approaches to model the
complex networks of gene interactions [34]: continuous and
discrete. The continuous approach relies on differential equa-
tions to reach a quantitative detailed model of biochemical
networks with cellular functions [18]. On the other hand, the
discrete approach is based on the construction of qualitative
discrete models of gene interactions, including the models
based on graphs such as the Bayesian Networks [15], Boolean
Networks [20] and the Probabilistic Boolean Networks [35]
which includes the Probabilistic Gene Networks [5]. Although
the continuous approaches offer a detailed understanding of the
considered system, they require a significant number of sam-
ples and information about the characteristics of the reactions
[19]. In its turn, the discrete approaches can be easily modeled
computationally and have been successfully employed in the
modeling and simulation of some biological process networks,
such as Drosophila melanogaster [32], [2], yeast cell cycle
[23], [40], [7], Arabidopsis thaliana [13], Saccharomyces cere-
visae [23], mammal cell cycle [14], Plasmodium falciparum
[5], among others.

In the context of discrete models, Boolean Networks rep-
resent an appropriate model to generalize and capture the
global behavior of biological systems, specially when the
number of experiments (samples) available is limited and
the dimensionality (number of variables) is very large [20].
The main disadvantage of such model is the information
loss as a consequence of the data quantization. However, the
data quantization is exactly what makes the Boolean model
simpler [36], [17]. Many methods were proposed to infer gene
networks modeled as Boolean Networks [1], [22], [24], [30].

Although genes can have only two possible values in
Boolean networks, it still difficult to infer their topologies
based on a small number of samples. Even considering the
probabilistic gene networks approach [5] whose assumptions
provide a simplification of the inference process that allows to
apply local feature selection (i.e., the best predictor gene subset
is searched for each target gene), the curse of dimensionality is
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still a major problem, since the number of statistical parameters
(configuration values) to be estimated in a subset of cardinality
k is 2k for Boolean networks. For instance, if a gene has 5
predictors, the number of possible configuration values for
the predictors is 32, which requires a data set with much
more than 32 samples (timepoints) to reliably estimate the
conditional probabilities of the target gene to be 0 or 1
given the configurations of the predictors (otherwise, many
configurations would be non observed or poorly observed).

In order to amenize the curse of dimensionality, in this
work we proposed a linear grouping method that maps the
predictor configuration values into their corresponding linear
combination values. As a consequence of this mapping, the
number of configurations becomes a linear function of the car-
dinality of the predictor set, improving the statistical estimation
at the expense of an information loss about the configuration
values which occurs after such mapping. Results obtained
from artificial data show that the linear grouping is sound in
cases where the inference process involves large number of
predictors per gene and small number of samples.

This manuscript is organized as follows. Section II defines
the Boolean networks model and its stochastic version, the
probabilistic Boolean networks model. Section III discusses
the probabilistic gene networks (PGN) approach. Section IV
introduces the proposed technique of linear grouping to re-
duce the number of possible predictor configuration values.
Section VI shows preliminary results comparing the network
similarities achieved by the PGN inference approach with
linear grouping against the similarities obtained by the same
approach without linear grouping. Some final remarks are
provided in Section VII.

II. BOOLEAN NETWORKS

A Boolean Network (BN) is a model proposed for the study
of complex systems dynamics, and of GRNs in particular [20].
In a Boolean Network, a set of n Boolean variables is
represented by a set V = {v1, v2, . . . , vn} of vertices in a
graph; the other component of a BN is a set of Boolean
functions Φ = {φ1, φ2, . . . , φn}, each function corresponding
to one vertex, called Boolean transition functions [8]. In GRNs
modeling, each vertex vi is associated with a certain gene, thus
we will refer to vi as either a gene or a vertex, indistinctly.
Each gene vi ∈ {0, 1}, i = 1, 2, ..., n represents a binary
variable for which its value in the next time instant t + 1 is
completely determined by the values of its ki predictor genes
in the current time instant t. More concretely, this dynamic can
be represented by vi(t + 1) = fi(v1i(t), v2i(t), ..., vki(t)), in
which v1i, v2i, ..., vki represents the ki predictor (or regulatory)
genes that influence the target gene vi.

The BN model considers only discrete iterations in time,
and all genes are synchronously updated at the same instant,
according to some deterministic function φi. In this model, the
dynamic of the system is deterministic, i.e., the ki predictors
and the respective logical function for each gene vi remain the
same during all timepoints.

A. Probabilistic Boolean Networks

Although the BNs are useful in many situations, an impor-
tant limitation is its determinism, which assumes an enviro-
ment without uncertainty. Moreover, it is important to consider

a cell as an open system, which can receive external stimuli.
In order to model the stochasticity of biological systems,
the Probabilistic Boolean Networks model (PBN) has been
proposed [35].

A PBN is a network in which each gene in a certain
timepoint has its binary expression value determined by a set
of Boolean functions of other genes in the previous timepoint,
where each function has a probability of being applied [35].
Thus, a BN is a specific type of PBN where all genes
are determined by a unique Boolean predictor function with
probability equal to 1.

Normally, the quasi-determinism inherent in biological sys-
tems can be modeled by PBN simply assigning, for each gene,
a probability close to 1 to a certain function and probabilities
close to 0 to the remaining functions. The functions with very
small probabilities can simulate perturbations (external stimuli)
or changes between biological contexts [6], [11].

III. PROBABILISTIC GENE NETWORKS INFERENCE

APPROACH

The probabilistic gene networks approach relies on the
application of the feature selection principle: for each target, a
search for the subset of predictors that best describes the target
behavior according to their expression signals is performed [5],
[26], [25]. Barrera et al employed this approach to analyse
the temporal expression signals of the Plasmodium falciparum
(one of the agents of the malaria disease), displaying notable
biological results [5]. Such approach assumes that the temporal
samples follow a first order Markov chain in which each
target gene value in a given instant of time depends only
on its predictor values at the previous instant of time. The
transition function is homogeneous (it is the same for every
time step), almost deterministic (from any given state, there is
one preferential state to go in the next time) and conditionally
independent. These assumptions are important simplifications
in small number of samples settings. An optinal assumption
for further simplification is to consider that the genes are
linearly dependent on other genes (linear dependence). We
consider this assumption in our proposed method described
in the following section.

IV. LINEAR GROUPING OF VARIABLES FOR

DIMENSIONALITY REDUCTION

Estimating an k-variable Boolean function from experi-
mental data requires 2k parameters: for each of the 2k possible
configurations of the input variables, it is necessary to say
whether the output should be 0 or 1. Even for moderately large
values of k, the number of parameters tend to be much higher
than the number of samples. In this situation, most of the input
configurations are never observed on experimental data and,
even for an observed configuration, the number of occurrences
might not be enough for high confidence estimation of the
output value. This is one instance of the phenomenon called
curse of dimensionality, in which the number of samples is
insufficient for reliable estimation of the conditional probabil-
ities [37].

In order to reduce the number of necessary parameters
for the estimation of the conditional probability distributions
P (Y |Z), where Y is a binary variable and Z is a binary vector
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in {0, 1}k, we propose a new method called “linear grouping“.
This goal is achieved by reducing the number of states from
2k to k+1 with a linear mapping of input vector Z ∈ {0, 1}k
into a integer number L ∈ Z. The mapping is defined by a
linear combination, expressed by Equation 1:

L = a1Z1 + a2Z2 + . . .+ akZk (1)

in which ai ∈ {−1, 1} for i ∈ {1, 2, . . . , k}. We define a
coefficient vector A = {a1, a2, ..., ak} ∈ {−1,+1}k rewriting
in vectorial format L = ATZ. This modeling assumes that a
predictor can be an activator (coefficient equal to +1) or an
inhibitor (coefficient equal to −1) of the given target gene Y .
As each coefficient ai can assume two values, there exists 2k

possible linear combinations to be evaluated for a predictor set
with dimension k. For a given predictor set Z, the configuration
of coefficients A∗ which results in the best criterion function
value is adopted as the linear combination that predicts Y
based on Z. Thus, the ranking of different predictor sets
for a given target is based on the criterion function values
corresponding to their best linear combinations.

As the predictors Zi are discrete random variables (binary)
and the coefficients ai are integer numbers, L is a discrete
random variable as well. The number of possible values for
L is exactly k + 1 for any coefficient vector configuration
A. The demonstration of this fact is as follows. Let k−
and k+ be the number of negative coefficients (inhibitors)
and the number of positive coefficients (activators) respec-
tively. Then, the dimension of the predictor set is given by
k = k− + k+. Since the gene expressions are binary values
(0 or 1), the smallest value that L can assume is exactly
−k−, which happens when all inhibitor genes are on (1)
and all activator genes are off (0). Analogously, the largest
value that L can assume is k+, occurring when all inhibitor
genes are off (0) and all activator genes are on (1). Therefore
L ∈ {−k−,−k− + 1, ..., k+ − 1, k+} with cardinality given
by k+ − (−k−) + 1 = k+1, as we would like to prove. This
result implies that the 2k instances of the original predictor
vector are mapped to k + 1 equivalence classes, according
to the resulting values of a given linear combination of the
predictor values. In the proposed method, the direct estimation
of P (Y |Z) is replaced by the estimation of P (Y |L). In this
way, the number of parameters to be estimated from a samples
set becomes significantly reduced.

Although there are 2k distinct forms to define the coeffi-
cient vector A as aforementioned, only half of these forms
(2k+!) need to be evaluates, since the other half generates
exactly the same groups with the signal of L inverted. In fact,
if A′ = −A, then A′ and A generate the same groups where
the magnitudes of their respective linear combinations are the
same, but with the inverted signals. Table I shows an example
which illustrates this fact.

For the example of Table I with dimension k = 3,
there exists 23 = 8 possible linear combinations,
but only 4 of them needs to be investigated:
(−1,−1,−1); (−1,−1,+1); (−1,+1,−1); (−1,+1,+1).
The other 4 remaining combinations generate just the same
partitions. Figure 1 presents the partitioning of the Boolean
lattice which is done for each of these linear combinations.

TABLE I. GROUPING OF INSTANCES IN PARTITIONS WITH

(a1, a2, a3) = (−1,−1,−1) AND (a1, a2, a3) = (+1,+1,+1). NOTE

THAT BOTH GROUPINGS GENERATE THE SAME PARTITIONS.

(a1, a2, a3) = (−1,−1,−1) (a1, a2, a3) = (+1,+1,+1)
L1 = −1z1 − 1z2 − 1z3 L2 = +1z1 + 1z2 + 1z3
-3 111 3 111

-2 011,101,110 2 011,101,110

-1 001,010,100 1 001,010,100

0 000 0 000

(a1, a2, a3) = (−1,−1,−1) (a1, a2, a3) = (−1,−1,+1)

(a1, a2, a3) = (−1,+1,−1) (a1, a2, a3) = (−1,+1,+1)

Fig. 1. Boolean lattice partitioning for the linear coefficients (a1, a2, a3) =
{(−1,−1,−1); (−1,−1,+1); (−1,+1,−1); (−1,+1,+1)}.

V. EXPERIMENTS

To evaluate the method proposed to infer gene networks
from expression data, we conducted experiments with simu-
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lated data. Artificial Boolean networks were randomly gener-
ated and the dynamic signals (expression profiles) produced
by the networks were simulated along timepoints to create the
input dataset. Section V-A describes the procedure to generate
the artificial networks and the corresponding simulated gene
expression data. The adopted topological similarity metrics for
evaluation of the results are provided in Section V-B. The
adopted feature search algorithm and the criterion function
are presented in Sections V-C and V-D, respectively. The
parametrization values adopted for the execution of the ex-
periments are found in Section V-E. Finally, the experimental
results involving the comparison of the feature search method
(described in Sections V-C and V-D) without linear grouping
and the same method with linear grouping are presented in
discussed in Section VI.

A. Generation of probabilistic Boolean networks and simu-
lated data

To generate a probabilistic Boolean network (PBN), we
fixed the number of genes (n), the average number of pre-
dictors per gene (〈k〉), and the network topology, chosen
between the random networks model Erdös-Rényi (ER) [12]
and the scale-free networks model Barabási-Albert (BA) [4].
First, the network topology is generated employing one of
the two models aforementioned. Next, for each gene gi, a
set of Boolean functions φi is randomly chosen from the set

of 22
ki

possible functions of ki predictors, where ki is the
number of predictors of the gene g+ i. The Quine-McCluskey
[29] method was applied to verify wether a certain selected
Boolean function is minimum (i.e, wether it really depends
of all predictors assigned to it in the groundtruth network or
not). If the function does not depends on all variables, new
functions are randomly chosen until finding one which depends
on all variables. At the end, each gene has a fixed number of
predictor functions, in which each function has a probability
to be applied. Considering Boolean networks, each gene has
a unique predictor function (deterministic behavior). On the
other hand, for probabilistic Boolean networks, 2 predictor
functions per gene were fixed in the experiments, where one
of them presents probability close to 1, simulating the quasi-
deterministic behavior inherent to real biological systems.

Once we have the network topology and the logical depen-
dencies, the expression profile data can be generated by fixing
the number m of timepoints (number of samples) and, for each
PBN, an initial state �s0 is randomly chosen from the set of all
2n possible states. Then, the evolution of the network states
is simulated from �s0 to �sm−1 through repeated application of
the functions set Φ. In case in which any state �si be repeated
in the simulation (this can happen if the simulation passes
through all atractor states before the generation of m states),
the dataset generated so far is discarded and the simulation
resets to another state �s0 randomly chosen. In this way, we
guarantee that each simulation passes through m distinct states.

B. Evaluation metrics adopted

The inferred network were compared to groundtruth net-
works by using two topological similarity metrics based on
the number of true / false positives and true / false negatives:
Positive Predictive Value (PPV) and Similarity (SIM) [9].
A true-positive is an edge present in both groundtruth and

inferred networks. A true-negative is an edge not present in
both networks. A false-positive is an edge present only in the
inferred network, while a false-negative is an edge present only
in the groundtruth network. Letting TP , TN , FP e FN be the
numbers of true-positives, true-negatives, false-positives and
false-negatives, respectively, PPV is defined by:

PPV =
TP

TP + FP
(2)

and SIM is defined by:

√
TP

TP + FN
× TN

TN + FP
(3)

C. Feature search algorithm adopted

The feature search algorithm adopted first applies an ex-
haustive search for the best subset of degree k′, where k′ is a
predefined parameter. Then, the Sequential Backward Search
(SBS) is applied taking the result of the exhaustive search step
as initial subset. SBS stops when the best subset of size k− 1
be worse than the subset of size k. Algorithm 1 contains a
more precise description of this procedure.

Algorithm 1 High level description of the feature search
algorithm adopted.

Require: Set of all genes X, target gene Y , gene expression
dataset, criterion function F to be minimized, and initial
degree k′

Ensure: Predictor set Z = {z1, . . . , zk} for Y
1: Z ← best subset of size k′ of X as predictor of Y by

applying exhaustive search
2: Z′ ← Z − {Z∗} such that Z∗ = argminZ∈ZF(Z −
{Z}, Y )

3: while F(Z′, Y ) < F(Z, Y ) and |Z| > 0 do
4: Z← Z′
5: Z′ ← Z − {Z∗} such that Z∗ = argminZ∈ZF(Z −

{Z}, Y )
6: end while
7: return Z

D. Criterion function adopted

Here we choose as criterion function the penalized mean
conditional entropy [26] defined by:

H(Y |Z) = α(|Z| −N)H(Y ) +
∑N

i=1(fi + α)H(Y |Z = zi)

α|Z|+ s
(4)

where |Z| is the number of possible instances of the predictor
vector Z (cardinality of Z), N is the number of observed
configurations (so, the number of non-observed configurations
is given by |Z| − N ), fi is the absolute frequency (number
of observations) of zi ∈ Z and s is the number of samples.
α is a positive penalization parameter. H(Y |Z = Zi) is
the conditional entropy of Y given Z = zi defined by∑

y∈Y P (y|zi)logP (y|zi). If the linear grouping proposed
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here described in Secion IV is applied, then the set of linear
combination values L replaces Z and li ∈ L replaces zi.

The penalized mean conditional entropy has been success-
fully applied as criterion function for feature selection in the
context of gene networks inference [5], [26], [25], [27]. The
entropy measures the disorder degree of a variable, so it should
be minimized.

E. Parametrization adopted

Table II presents the parameter values used to perform the
experiments.

TABLE II. PARAMETERS USED TO PERFORM THE EXPERIMENTS.

Parameter Value

Network size (number of genes n) 20
Average degree of the groundtruth network 〈kgt〉 3
Number of timepoints (signal length m) {20,50}
Topological models {ER,BA}
Functional models {BN,PBN}
Probabilities of the PBN Boolean functions (0, 96; 0, 04)
Initial degree to start the search (k′) 5
Mean conditional entropy penalization (α) 1

According to the parameters described in Table II, eight
experiments were performed, varying between two topological
models (ER and BA), two functional models (BN and PBN),
two signal lengths (20 and 50).

VI. RESULTS AND DISCUSSION

For each one of the eight experiments described in the
previous section, we generated 30 different groundtruth net-
works, each one generating 30 distinct sample sets, resulting
in a total of 900 gene expression datasets. We took into
account these datasets to perform a comparative analysis of the
feature selection method described in Algorithm 1 guided by
the penalized mean conditional entropy with linear grouping
(LG) versus without linear grouping (normal) to infer gene
networks. Figures 2 and 3 present boxplots of the PPV and
SIM values, respectively (each boxplot represents 900 values).
Table III summarizes these results (averages and standard
deviations). First, we note that the PPV values obtained by
the method without linear grouping (normal) were markedly
inferior to those obtained by the method with linear grouping
(grouping) for all considered scenarios. Besides, in most cases,
and specially for the cases with small number of samples
(m = 20), the SIM values obtained by the normal method
also were smaller to the obtained by linear grouping. Thus, it
is notable that the linear grouping presents better estimation
power for higher dimensionalities, since the method search
starts from a predictor set with a relatively large dimension
(k′ = 5). For a large number of samples (m = 50), the
difference in the performances decreases, as expected, although
the linear grouping method still presents better PPVs.

An important issue in feature selection is to obtain the
subset with the correct degree, i.e., the correct dimensionality
of the feature set. This is an open problem which needs to be
carefully analysed. In cases where the number of samples is
very limited, it is difficult to obtain the exact dimensionality of
the feature set, specially if this set possesses large dimension.
Considering networks in general, a node is considered an

ER, BN, 20 samples ER, BN, 50 samplesp

ER, PBN, 20 samples

p

ER, PBN, 50 samplesp

BA, BN, 20 samples

p

BA, BN, 50 samples

BA, PBN, 20 samples BA, PBN, 50 samples

Fig. 2. Boxplots representing PPV values of 900 inferred networks. Each
panel contains two boxplots: normal (left); linear grouping (right).
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ER, BN, 20 samples ER, BN, 50 samples

ER, PBN, 20 samples ER, PBN, 50 samples

BA, BN, 20 samples BA, BN, 50 samples

BA, PBN, 20 samples BA, PBN, 50 samples

Fig. 3. Boxplots representing similarity (SIM) values of 900 inferred
networks. Each panel contains two boxplots: normal (left); linear grouping
(right).

TABLE III. AVERAGES AND STANDARD DEVIATIONS OF THE PPV AND

SIM VALUES FOR THE RESULTS PRESENTED IN FIGURES 2 AND 3.

PPV SIM

m method BN PBN BN PBN

ER

20
normal 0.29 ± 0.08 0.24 ± 0.06 0.46 ± 0.07 0.44 ± 0.06

linear 0.52 ± 0.11 0.41 ± 0.09 0.58 ± 0.06 0.56 ± 0.06

50
normal 0.69 ± 0.12 0.51 ± 0.08 0.74 ± 0.07 0.71 ± 0.06

linear 0.81 ± 0.08 0.68 ± 0.08 0.74 ± 0.06 0.74 ± 0.06

BA

20
normal 0.40 ± 0.12 0.28 ± 0.08 0.53 ± 0.07 0.49 ± 0.07

linear 0.60 ± 0.12 0.43 ± 0.09 0.61 ± 0.06 0.58 ± 0.06

50
normal 0.72 ± 0.12 0.46 ± 0.07 0.74 ± 0.07 0.70 ± 0.06

linear 0.82 ± 0.09 0.65 ± 0.11 0.72 ± 0.06 0.73 ± 0.06

input hub if it is influenced by a relatively large number
of variables. Thus, estimating hubs from a limited number
of samples is a challenge. By grouping the instances of the
predictors, the number of parameters to be estimated decreases,
which theoretically facilitates the detection of hubs. In this
way, we analised the degree distribution of the nodes present
in the networks inferred by the normal method and the linear
grouping method, as well as the degree correlations taking the
groundtruth network nodes as reference.

The histograms presented in Figure 4 show the degree
distribution of the groundtruth networks and the networks
inferred by normal and linear grouping methods. We can see
that the linear grouping distributes the degrees more adequately
than the normal method. This is due to the difficulty with
which the normal method has to deal with non-observed
instances. Since the search algorithm starts with degree k′ = 5,
initially the conditional probability tables present 25 = 32
possible instances. For this situation with only 20 timepoint
samples (m = 20) at least 12 instances are not observed, which
implies that the best subset of size 5 obtained unlikely will be
adequate in this case. In addition, by removing elements from
this initial set, its properly contained subsets do not tend to be
satisfactory, leading to a significant concentration in degree 4.
This is exactly the degree for which the number of samples
(m = 20) begins to exceed the number of instances (24 = 16).
Such problem does not occur for linear grouping, since it
tends to choose a good predictor subset with degree k′ = 5
as starting point. Table IV presents the correlations between
the degrees of the inferred network nodes and the degrees
of the corresponding groundtruth nodes. These correlations
corroborate the observations made for m = 20, since in this
case the smallest correlations were observed for the normal
method.

TABLE IV. CORRELATIONS BETWEEN THE INFERRED NETWORK NODE

DEGREES AND THEIR CORRESPONDING GROUNDTRUTH NETWORK NODES

DEGREES.

m = 20 m = 50
topology method BN PBN BN PBN

Erdös-
Rényi

normal 0.47 0.26 0.58 0.24
linear grouping 0.53 0.36 0.56 0.30

Barabási-
Albert

normal 0.52 0.27 0.58 0.16
linear grouping 0.60 0.39 0.57 0.29

For a larger volume of samples (m = 50) in the Boolean
networks scenario (noise free), the normal method estimates
the conditional probability distribution tables more adequately,
presenting degree correlations comparable to those obtained
by the linear grouping method. However, in the probabilistic
Boolean networks scenario (noisy), the linear grouping method
presented better correlations.
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ER, 20 samplesp

ER, 50 samples

BA, 20 samples

BA, 50 samples

Fig. 4. Histograms of accumulated degree distribution for 900 inferred
networks. Each panel presents two rows of histograms, where the first row
corresponds to BN and the second row corresponds to PBN. The groundtruth
histograms correspond to the degree distribuion accumulated for 30 networks
multiplied by 30 just to maintain the scale compatible with the histograms of
the methods.

VII. CONCLUSION

This paper presented a novel feature selection technique
to infer gene networks modeled by discrete models such as
Boolean networks. The principle of the proposed method is
based on reduction of the number of estimation parameters
(configurations) of the predictor values by grouping parameters
in equivalence classes. The idea is to group in the same
equivalence class parameters which lead to the same linear
combination value according to the linear coefficients tbat op-
timize a given criterion function. Such clusters can be geomet-
rically imagined as Boolean lattice cuts by parallel hyperplans.
Two of these hyperplan necessarily intercept a unique vertex
each, where those vertices have maximum Hamming distance
(all bits flipped) between them. This approach effectively
alleviates the curse of dimensionality, since the number of
equivalence classes linearly grows with the dimension (number
of predcitors), instead of growing exponentially as is the case
of the original configurations. This is done at the cost of some
information loss since the original configurations set is mapped
to a smaller set (process similar to quantization).

The experimental results presented involving topological
distances such as similarity (SIM) and positive predictive value
(PPV) as inference evaluation criteria show that inferences
involving larger number of predictors per gene tend to be
benefited from linear grouping, specially if the number of
samples is very small. On the other hand, for datasets with
larger number of samples and inferences involving a smaller
number of predictors per gene, there is no significant difference
in the performances of the method without grouping (normal)
and the linear grouping. This happens because the number of
samples in this case is enough to allow a reasonable statistical
estimation through the original configurations of the predictors.
Such observation suggests that the method can be enhanced
by a multiresolution analysis which consists on grouping only
predictor configurations that are poorly observed in the data.
This analysis has been successfully employed, for instance, to
the binary filters design [10].

The linear grouping approach presented here creates un-
balanced equivalence classes, which is a disadvantage. For
instance, considering a Boolean lattice of 3 dimensions (3
features), two classes have only one configuration each, while
the other two classes present three configurations each. Such
unbalance is worsened with the dimension increasing. To
mitigate this problem, one can consider a larger range of
values for the linear coefficients, since in this paper only
two possible values were considered: −1 (inhibition) and
+1 (activation). The increasing on the number of possible
coefficient values means to assign a variable weight for the
activation or inhibition of a predictor. For example, a predictor
with coefficient +2 would have twice the influence of a
predictor with coefficient +1. Nevertheless, a larger range of
coefficient values presents the disadvantage of having more
equivalence classes to be considered, negatively impacting the
statistical estimation power. In addition, the computational cost
increases since a greater number of linear combinations need
to be evaluated.

Other grouping modes can be investigated and evaluated.
A possibility would be consider equivalence classes containing
configurations close to each other according to some distance
criterion. For example, each equivalence class could contain

249



only two neighbor configurations (Hamming distance equal
to 1). From the geometrical point of view, such grouping
partition the Boolean lattice in parallel edges. A disadvantage
of this kind of grouping is that the number of classes is
equivalente to half of the number of configurations, i.e., it
increases exponentially with the dimension. Notwithstanding,
such grouping still can be a more appealing alternative for a
small dimension (smaller or equal to 5).
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