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Abstract – Protein subnetwork biomarkers for 144 diseases and 
pathways are analyzed in terms of protein-protein interaction 
(PPI) score available in STRING database. Most of the 
subnetwork biomarker (SNB) studies are to classify disease 
samples from the control. But no de novo algorithm is available to 
identify SNB from the whole genome PPI network without the 
knowledge of differentially expressed genes. Recently, based on 
mouse model, researchers showed that there exists a dynamical 
network biomarker which can distinguish among the normal state, 
pre-disease state, and disease state of a disease progression. But, 
most of the gene expression data for human diseases are at the 
disease state.  No data is available for the first two stages of a 
disease. Understanding the network behavior of a disease at 
disease state might help in the development of de novo algorithm 
for predicting protein SNBs not only for disease state but also for 
early stages of a disease or early warning signals. PPI score in 
STRING database represents a rough estimate of how likely a 
given interaction describes a functional linkage between two 
proteins. So, analyzing protein SNB for human diseases at disease 
state with respect to PPI score may shed some light in the 
development of de novo models for predicting SNB.  
   A simple brute force approach is used to isolate the SNB for a 
disease or pathway from the genome-wide PPI network by 
projecting the corresponding differentially expressed proteins. 
Then the SNBs are analyzed in terms of PPI score. Our 
investigation shows that higher is the PPI score of a network is 
more likely to produce a true SNB for a disease. Results also 
show that Physical PPIs with high score are more capable of 
producing a true SNB. 

Keywords- biomarker; brute force method; PPI biomarker; PPI 
score; single protein biomarker; subnetwork biomarker. 

I. INTRODUCTION 

In general, a biomarker or marker is a gene or group of 
genes that represent a certain phenotype or disease. 
Biomarkers are important in the study of disease and drug 
design. If the biomarkers for a disease are known then drug 
can be designed to control the activity of biomarkers, thus 
controlling the disease. Usually, genes expressed 
differentially are considered as single gene markers 
(SGMs). Studies show that sets of SGMs determined by 
differential expression vary considerably when inferring 
them from different platforms thus making them useless in 
cross-platform studies [1]. Chuang et al. [2] showed that 
multigenetic markers can be used to address this issue.  

Multigenetic markers consist of several differentially 
expressed genes which also form a connected component in 
a protein-protein interaction (PPI) network thus giving the 
name subnetwork biomarkers. Subnetworks are significant 
because, in contrast to individual proteins, they provide 
concrete hypotheses as to the molecular complexes, 
signaling pathways, and other mechanisms that impact the 
disease outcome [3]. 

With the recent development of high-throughput 
experiment to determine protein-protein interaction both 
physical and genetic, PPI networks are increasingly serving 
as tools for discovering the molecular basis of disease. In a 
review by Ideker and Sharan [3], authors enumerated four 
different prospective applications of PPI networks to  
disease, namely: identifying new disease genes; the study 
of their network properties; identifying disease-related 
subnetworks; and network-based disease classification. 
Most of the studies on disease-related subnetworks are to 
provide better classification of disease samples from the 
control [2, 4, 5].  

Recently, researchers enumerated three stages of disease 
progression [6-10]: normal state, which is a stable state 
where the system undergoes gradual or slow change; pre-
disease state, which is a limit of the normal state just before 
the drastic transition to the disease; and disease state, 
which is another stable state after the critical transition, 
where the system is considered to be seriously damaged. 
Based on mouse model, they showed that there exists a 
dynamical network biomarker (DNB) which is capable of 
distinguishing among three stages of disease progression 
[6-10]. But, for human diseases, most of the gene 
expression data are at the disease state (3rd stage of disease 
progression).  No data is available for the 1st and 2nd stages 
of a disease. So, a model for predicting disease network at 
early stages would help not only in taking protective 
measure but also in drug design. Understanding the 
network behavior of a disease in disease state might help in 
developing the predictive model for early disease states 
(normal state and pre-disease state). The main objective of 
this study is to understand and characterize protein 
subnetwork biomarkers at disease state.  

Researchers [11] found that disease genes exhibit an 
increased tendency for their protein products to interact 
with one another, tend to be co-expressed in specific 
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tissues, and display coherent functions with respect to all 
three branches of the Gene Ontology hierarchy [12]. PPI 
scores available in STRING database represent the 
confidence score between two proteins to have similar 
functions [13]. So, it would be interesting to see the pattern 
or correlation of disease genes in terms of PPI score.  

II. DATASETS PREPARATION 

Two sets of data, namely i) list of biomarkers or single 
protein biomarkers (SPBs) and ii) protein-protein 
interaction data are required for identifying protein 
subnetwork biomarkers for a disease. In the present study, 
we considered human genome to identify subnetwork 
biomarkers related to different diseases. The list of 
biomarkers are procured from SABiosciences of Qiagen 
[14]. Two genome-wide PPI networks for human are used 
in the present work: one non-scored PPI network from 
BioGRID database [15] and one Scored PPI network from 
STRING database [13].  

A. Single Protein Biomarkers  
Biomarkers or single protein biomarkers (SPBs) for 144 

human diseases and pathways are procured from 
SABiosciences of Qiagen [14].  

Table I shows a sample of 10 disease and pathway 
names. Each disease or pathway is associated with 84 key 
genes commonly involved in the dysregulation of signal 
transduction and other normal biological processes during 
disease or pathway [14]. There are total of 4584 genes 
associated with 144 diseases and pathways. Number of 
disease associated with a gene ranges from 1 through 51. 
2396 genes are associated with only one disease, 909 genes 
are associated with two diseases. On the other extreme, 
gene TNF is associated with as most as 51 diseases, 
followed by gene IL6 with 48 diseases, followed by gene 
VEGFA with 44 diseases, etc. 

TABLE I. A SAMPLE OF 10 DISEASES AND PATHWAYS 

Sl # Disease or Pathway 

1 Adherens_Junction 

2 Adipogenesis 

3 Allergy_and_Asthma 

4 Alzheimer_disease_GE 

5 Amino_Acid_Metabolism_I 

14 Breast_Cancer 

35 Diabetes 

37 DNA_Repair 

143 WNT_Signaling_Targets 

144 Wound_Healing 
 

 

B. BIOGRID PPIs 
Version 3.2.102 is used for this study. Total number of 

PPIs is 217215 of which 1665 are genetic PPIs and 215550 
are physical PPIs. For this study, we used physical PPIs 
only. After removing duplicate and self-interacting PPIs, 
we are left with 132293 physical PPIs composed of 15527 
proteins. So, on an average, there are 9 interactions per 
protein. 

C. STRING PPIs 
Original PPI dataset, downloaded from STRING 

database version 9.0, contains 3,281,414 PPIs. For the 
present study, direction of interaction is not important. 
After removing direction and some erroneous data (860 in 
total: some are missing scores, some do not conform to 
STRING names etc.), final dataset contains 1,640,129 PPIs 
composed of 18,595 proteins. 

STRING PPIs do not come with official protein names 
but disease proteins procured from Qiagen [14] are in 
official protein names. A mapping between STRING and 
official protein names is required. Another file from 
STRING database with GO annotation contains both 
STRING and official protein names, which is used as the 
mapping file. Original mapping file contains 17919 unique 
records. After cleaning some erroneous data (some protein 
names are in numbers i.e., not in official protein names), 
we are left with 17839 unique records. Finally, STRING 
PPI names are converted to PPIs in official protein names 
and working network is composed of 1568065 PPIs and 
16614 proteins. So, on an average, there are 94 interactions 
per protein. 

D. BIOGRID vs. STRING PPIs 
Table II shows the topology of cleaned PPI networks   

obtained from BIOGRID and STRING database. BIOGRID 
network is composed of 15527 proteins and 132293 PPIs 
with an average degree per node of 17, and STRING 
network is composed of 16614 proteins and 1568055 PPIs 
with an average degree of 189. So, STRING network is 
highly connected compared to BIOGRID network.  A third 
network, named COMMON, is derived from the 
intersection of BIOGRID and STRING PPIs. COMMON 
network is composed of 9485 proteins and 52817 PPIs with 
an average degree of 11. It is noticeable that 40% of 
BIOGRID PPIs and only 3.4% of STRING PPIs are in 
common.  

  TABLE II. TOPOLOGY OF BIOGRID AND STRING PPI NETWORKS. 

Network # PPI # Protein Avg Deg 

BIOGRID 132293 15527 17 

STRING 1568055 16614 189 

COMMON 52817 9485 11 
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III. METHODOLOGY 

A. Brute Force Method for Identifying Subnetwork 
Biomarkers 
The general idea of computing subnetwork biomarkers, 

for example biomarkers for cancer, is to search for 
combinations of genes which (i) are sufficiently 
differentially expressed in the cancer tissue samples from 
gene expression training data and (ii) form a connected 
pattern in the PPI network [16]. A simple Brute Force 
method [17] to identify subnetwork biomarkers related to 
144 human diseases and pathways is developed using the 
definitions given in this section.  
 
Single Protein Biomarker (SPB): A protein that is 
sufficiently differentially expressed in the tissue of a patient 
with the disease or phenotype is called a single protein 
biomarker for the disease or phenotype. 
PPI Biomarker (PPIB): A PPI composed of two SPBs.  
True PPIB: A PPIB is a true PPIB when both proteins of 
the PPIB are associated with the same disease, phenotype 
or biological process. 
Pseudo PPIB: A PPIB is a pseudo PPIB when two proteins 
of the PPIB are associated with two different diseases, 
phenotypes or biological processes. 
Subnetwork Biomarker (SNB): A Subnetwork composed 
of PPIBs. So, by definition, an SNB is composed of one or 
more PPI biomarkers. 
True SNB: An SNB composed of true PPIBs. 
Pseudo SNB: An SNB composed of pseudo PPIBs. 
The brute force method to identify SNBs from a genome-
wide PPI network is developed employing bottom-up 
approach starting with SPBs. First, PPIBs are found from 
SPBs, then, SNBs are found from PPIBs just using the 
definitions given above. 

B. Measuring Capability of Producing SNB 
For practical purpose, we need an SNB that solely 

represents a disease, which is a true SNB composed of true 
PPIBs. The capability of producing true SNB by a network 
depends on the type of PPIs such as physical or genetic as 
well as PPI scores. A simple form of accuracy is defined in 
order to measure the capability of a PPI network in 
identifying protein subnetwork biomarkers.  
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It is noticeable that the accuracy defined here is different 
from usual classification accuracy, which depends on true 
positive, true negative, false positive and false negative. 

IV. RESULTS AND DISCUSSION 

Subnetwork biomarkers are identified using the brute 
force method described above and then analyzed in terms 
of PPI scores. PPI scores ranging from 150 to 999 available 
in STRING database [13] represent the confidence of how 
likely two proteins will have the similar function. So, 
understanding the characteristics of subnetwork biomarkers 
might help in the development of de novo algorithm for 
predicting subnetwork biomarkers without the knowledge 
of differentially expressed genes. We explored the 
characteristics of SNBs with respect to PPI score for 
combined SNBs considering all of the 144 diseases and 
pathways. It should be noted that there are three types of 
SNB in combined analysis: true SNB composed of true 
PPIBs for all diseases, pseudo SNB composed of pseudo 
PPIBs for all diseases, and combined SNB composed of 
true PPIBs and pseudo PPIBs for all diseases. In case of 
individual disease analysis, which will be included in 
extended version of this paper, only true SNBs are involved 
since by definition, pseudo and combined SNB do not exist 
for an individual disease. 

A. Combined SNB for 144 Diseases and Pathways 
PPIBs and SNBs are found for 144 diseases and 

pathways using three different PPI networks (BIOGRID, 
STRING, and COMMON) and SPBs for corresponding 
diseases and pathways. Table III summarizes the SNBs in 
terms of number of SPBs, number of PPIBs, accuracy, and 
average PPI score. Combined SNB is composed of pseudo 
PPIBs and true PPIBs, whereas true SNB is composed of 
only true PPIBs. BIOGRID PPIs do not come with PPI 
score and as such there are no average PPI scores for both 
combined SNB and true SNB. 

TABLE III. COMBINED SNB AND ACCURACY 

  Comb. SNB True SNB   Avg. PPI Score

Network SPB PPIB SPB PPIB Accuracy 
Comb. 
SNB 

True 
 SNB 

BIOGRID 3744 30713 2451 8541 27.81%  ---  ---

STRING 4504 489019 4395 118898 24.31% 381 485

COMMON 3241 18379 2273 7381 40.16% 703 809
 
Coverage in terms of SPB: There are altogether 4584 

SPBs (84 SPBs for each disease with some SPBs common 
in different diseases) for 144 diseases. STRING network 
contains majority of SPBs - 4504 with combined SNB and 
4395 with true SNB, followed by BIOGRID network - 
3744 with combined SNB and 2451 with true SNB. 
COMMON network has the lowest coverage as expected. 

Network in terms of accuracy: It is clear from Table III 
that COMMON network is more capable of producing true 
SNB (40.16%) compare to individual networks, BIOGRID 
with 27.81% and STRING with 24.31%. It is also 
noticeable that accuracy has direct relation with the average 
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PPI score of SNB. COMMON network has higher PPI 
scores - 703 for combined SNB and 809 for true SNB, 
compare to STRING network - 381 for combined SNB and 
485 for true SNB. It can be concluded that higher is the 
PPI score of a network, it is more likely to produce a true 
SNB (Conclusion-1). In order to prove this hypothesis, 
further investigation is done in section IV-C. The similar 
observation was made by Charles et al. [17] in case of 
identifying SNB for biological roles in yeast. By definition, 
COMMON network is composed of physical PPI only, 
since it is the intersection of BIOGRID and STRING data 
and in this study, we considered only physical PPIs from 
BIOGRID. It is also clear that COMMON PPIs have high 
PPI scores. So, COMMON network is composed of 
physical PPIs with high scores. It can be concluded that 
physical PPIs with high score are more capable of 
producing a true SNB (Conclusion-2). By definition, 
physical PPI means both proteins physically interact 
together to produce another product. So, physical PPI with 
high score means that two proteins are more likely to 
produce another product and as such they are more likely 
responsible for the disease caused by the product. Then 
question might appear which physical PPIs with high score 
are responsible for a particular disease. Further 
investigation is required to answer this question.  

B. STRING Network and Derived SNBs 
Since STRING network has the largest coverage in 

terms of SPBs as mentioned in section IV-A, it is better to 
do detail analysis of SNBs derived from it. Table-IV shows 
the topology of three different types of SNBs (combined 
SNB, pseudo SNB, and true SNB) derived from STRING 
network along with the original STRING network.  

TABLE IV. TOPOLOGY OF STRING NETWORK AND DERIVED SNBS. 

Network PPI Protein Avg 
Degree 

Avg 
Score Comp

STRING 1568056 16614 189 381.09 1 

Comb. SNB 489019 4504 217 381.05 1 

Pseudo SNB 370121 4492 165 347.62 1 

True SNB 118898 4395 54 485.10 1 

 
It is noticeable that the average degrees per node for 

networks STRING, combined SNB, pseudo SNB are very 
high (189, 217, and 165 respectively) compare to network 
for true SNB (54 only). So, first three are highly connected 
networks compare to true SNB. Three types of SNBs 
(Combined, pseudo, and true) have about the similar 
number of proteins (4400 ~ 4500) but true SNB has very 
low average degree (54) compare to combined SNB (217) 
and pseudo SNB (165). This is expected since both proteins 
of a PPI for true SNB are related to the same disease. It can 
be concluded that, for SNBs derived from a genome-wide 
PPI network, true SNB has the lowest average degree 

compare to combined SNB and pseudo SNB (Conclusion-
3).   

It is interesting that average PPI scores for STRING and 
combined SNB are about the same (381.0). This indicates 
that PPIs in combined SNB are nothing but the random 
sample of STRING PPIs. So, it can be concluded that in 
identifying SNB from a genome-wide PPI network, 
combined SNB, which is the combination of true PPIBs and 
pseudo PPIBs, does not carry any weight (Conclusion-4). 
In other words, combined SNB should not be considered 
for identifying an SNB for a disease. Average PPI score for 
pseudo SNB is less than combined SNB (347 < 381) and 
much less than true SNB (347 << 485). By definition, 
pseudo SNB is composed of pseudo PPIBs and a pseudo 
PPIB is composed of two proteins associated with two 
different diseases. So, two proteins of a pseudo PPIB are 
more likely related to two different functions and as such 
they will have low confidence score of having similar 
function. On the other hand, true SNB is composed of true 
PPIB and two proteins in a true PPIB are related to the 
same disease. So, two proteins of a true PPIB are more 
likely to have similar function and as such true PPIBs are 
more likely to have high PPI score. It can be concluded that 
true SNBs are composed of PPIs with high PPI scores 
compared to pseudo SNBs (Conclusion-5). This suggests 
that PPIs with high scores can be used as the seed for the de 
novo algorithm for identifying an SNB for a disease from a 
genome-wide PPI network. 

Fig. 1 shows the cumulative distribution of frequency of 
PPI based on PPI score for different SNBs along with the 
original STRING network. It is clear that the frequency 
distributions for STRING and combined SNB are very 
similar. As a result, the average PPI scores for these two 
networks are almost the same (Table IV). This implies that 
combined SNB is nothing but a network formed by a 
random sample of PPIs selected from the whole-genome 
PPI network (Conclusion-6). But the distribution for true 
SNB and pseudo SNB are very distinct and they are apart 
from each other. It is clear that in case of pseudo SNB, 
there are more PPIs with low scores compare to true SNB. 
For example, about 84% pseudo PPIBs have scores less 
than 500 compare to 63% of true PPIBs. In other words, 
true SNB has more PPIs with high scores compare to 
pseudo SNB. For example, about 18% true PPIBs have 
scores higher than 800 compared to 6% pseudo PPIBs. This 
is the reason that true SNBs have high average score 
compared to pseudo SNBs as shown in Table IV. True 
PPIB means that both proteins are associated with the same 
disease. Since majority of true PPIBs have high PPI scores 
then two proteins forming a true PPIB are more likely to 
have the same molecular function. So, a disease is 
occurring due to disruption/dysregulation of some 
molecular function. 
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Figure 1. PPI score distribution of STRING network and SNBs derived 

from STRING. Bin size = 100. 

C. Effect of PPI Score in Identifying SNB 
Fig. 2 presents the accuracy produced as function of PPI 

score. Whole network is divided into smaller networks 
using a bin size of PPI score equals 50, 100, and 120. For 
each bin, subnetwork biomarkers were identified and then 
accuracy for the same was evaluated. It is evident that 
accuracy increases with the increase of PPI score. It is 
noticeable that for PPI scores ranging between 800 and 
900, accuracy is less than the previous score bin for smaller 
bin sizes like bin size of 50 and 100. For example, for bin 
size 50, accuracy for this range is 30.70%, which is smaller 
than the accuracies for previous five bins (43.06%, 46.23%, 
41.86%, 37.75%, and 31.65%). For bin size 100, accuracy 
for this range is 41.22%, which is smaller than the accuracy 
for previous bin (44.27%). As the bin size is increased 
accuracy goes up for this range of score, eventually, it 
becomes larger than the previous bin. For example, for bin 
size 120, accuracy for this range is 47% which is larger 
than the accuracy for the previous bin, 44%. So, it can be 
concluded that the general trend is that accuracy or 
capability of producing a true SNB by a network increases 
with PPI scores (Conclusion-7). A similar trend is 
observed by Charles et al. [17] (Fig. 4 of their paper) in the 
study of protein subnetwork biomarkers for yeast 
considering single protein biomarkers related to biological 
roles. By definition of accuracy, we can conclude that 
higher is the PPI score of a network, more is the capability 
of producing true SNB. Higher the PPI score, higher the 
confidence of interaction between two proteins [11]. If the 
two proteins are more likely to interact with each other, 
they are more likely to be localized at the same subcellular 
location [8, 9]. As a result, they are more likely to be 
associated with the same cellular role or phenotype or 
disease. This is the reason for which PPIs with high score 
are more capable of producing subnetwork biomarker with 

high quality. This also proves the hypothesis made in 
section IV-A that higher is the PPI score of a network, it is 
more likely to produce a true SNB (Conclusion-1). 
 

 
 
Figure 2. PPI scores on the performance of identifying true SNBs.  
 

V. CONCLUSION AND FUTURE REMARKS 

A brute force method to identify subnetwork 
biomarkers (SNBs) from a genome-wide PPI network is 
developed employing bottom-up approach starting with 
single protein biomarkers (SPBs). First, PPI Biomarkers 
(PPIBs) are found from SPBs. Then SNBs are found from 
PPIBs. We explored the characteristics of SNBs with 
respect to PPI score for combined SNBs considering 144 
diseases and pathways.  

Our investigation shows that higher is the PPI score of 
a network is more likely to produce a true SNB for a 
disease (Conclusion-1). It also shows that physical PPIs 
with high score are more capable of producing a true SNB 
for a disease (Conclusion-2). So, the general trend is that 
accuracy or capability of producing a true SNB by a 
network increases with PPI scores (Conclusion-7). A 
similar trend is observed by another study of protein 
subnetwork biomarkers for yeast considering single protein 
biomarkers related to biological roles [17].  

Combined SNB, composed of true PPIBs and pseudo 
PPIBs, is nothing but a subnetwork formed by a random 
sample of PPIs selected from the whole-genome PPI 
network (Conclusion-6).  So, in identifying SNB from a 
genome-wide PPI network, combined SNB does not carry 
any weight (Conclusion-4). In other words, combined SNB 
should not be considered for identifying an SNB for a 
disease. 

For SNBs derived from a genome-wide PPI network, 
true SNB has the lowest average degree compare to 
combined SNB and pseudo SNB (Conclusion-3). This 
property can be used in the development of de novo 
algorithm for identifying true SNB for a disease from the 
whole-genome PPI network.   
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Our results also indicate that true SNBs are composed 
of PPIs with high scores compared to pseudo SNBs 
(Conclusion-5). This suggests that PPIs with high scores 
can be used as the seed for the de novo algorithm for 
identifying true SNB for a disease from a genome-wide PPI 
network. 

Present study considers combined SNB for 144 diseases 
and pathways. Further investigation is required for 
analyzing i) combined SNB for diseases only, ii) combined 
SNB for pathways only, iii) individual SNB for each 
disease and pathway, iv) which physical PPIs with high 
score are responsible for a particular disease, and v) 
functional enrichment of each SNB. We are investigating 
these aspects for including in the extended version of the 
paper.  
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