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Abstract—Poor adherence to medical regimen causes approx-
imately 33% to 69% of medication-related hospitalizations and
accounts for $100 billion in annual health care costs. In this paper
we address the problem of unintentional non adherence, when
patient fails to take a medication due to forgetfulness or careless-
ness. We present the safe approach to software implementation
of a portable reminder device with enabled personalization of
medical regimen. The presented prototype is designed for imatinib
administration, a drug used to treat Chronic Myeloid Leukemia
(CML). However, thanks to the component-based structure of the
software, the method can be applied to other cases by replacing
implementation of certain components.

I. INTRODUCTION

Statistically, over 300 million people worldwide suffer from
diabetes, and thousands have diagnosed cancer of various
types. Those are examples of chronic diseases that may last for
years. The treatment of such diseases requires the adherence
to the medication regimen, with proper dosages and adminis-
tration scheduling, to maintain the plasma drug concentration
within specific therapeutic ranges, which for many drugs, such
as anticancer ones, are very narrow. According to [1] poor
adherence causes approximately 33% to 69% of medication-
related hospitalizations and accounts for $100 billion in annual
health care costs. Therefore, often medical treatments are
performed under close control of medical personnel that also
performs occasional tests needed to adjust the treatment in
personalized manner to achieve better results. Usually, the
a priori personalization of medication is achieved by using
Pharmacokinetic (PK) models describing the patient plasma
drug concentration changes in time based on patient specific
parameters and administered dosages. Later, in the a posteriori
phase, the PK model parameters can be personalized [2] even
more by performing occasional in-plasma drug concentration
measurements called Therapeutic Drug Monitoring (TDM).
The requirement to the adherence to the medication regimen
with a posteriori personalization of the treatment demands that
patients spend a significant amount of time in hospitals, which
essentially lowers their life quality.

The introduction of a portable device, which could remind
the patient when to take a drug dosage, perform the occa-
sional TDM measurements, and adjust the treatment based on
patient adherence to the medication regimen and the TDM
measurements would be beneficial to many chronic patients.
It would add more freedom to their lives, and reduce the
treatment cost by only reducing the number of hours they

spend in the hospitals. The requirements to such devices,
predominantly controlled by software, are high. Even though
they can run the same PK algorithms used by medical doctors
to prescribe the dose, they must play a role of a doctor in
validating the decision. Automatization of such behaviours
may reduce the number of human factor errors, however, often
with the price of introducing new types of software design
errors, that may cause system failures or provide unpredictable
behaviours. For example, the device may fail to provide an on-
time reminder, due to being busy with processing other tasks.
In embedded system design, such systems are known to be
safety-critical. One of the approaches to the development of
safety-critical software is to use formal methods, theorem prov-
ing, verification and/or correct-by-construction software design
methodologies, which allow a high level representation of the
software architecture that can be proven operating correctly
against predefined properties. Some of the techniques provide
code synthesis with the guaranty that the code preserves the
properties of the high level model.

In this paper we present the implementation of a portable
device prototype addressing the problem of unintentional non
adherence to the medication regimen of imatinib [3] drug used
to treat Chronic Myeloid Leukemia (CML). The prototype is
implemented as a control software running on the ultra-low
power processor Icycom [4]. At the abstract level the soft-
ware is modeled with Timed Automata extended with Tasks
(TAT) model implemented in TIMES tool [5]. The software
is developed as a closed-loop control flow activating the tasks
of TDM measurements, recording of the patient adherence to
medication, PK modeling personalization augmented with the
decision support system for medication regimen adjustment
and validation of the regimen against medical guidelines (GLs)
for drug administration, and, if necessary, generation of alarms
sent to the patient and/or to the hospital. It is clear that the final
device should be able to perform TDM measurements to adjust
the medication regimen, which requires a real embedded bio-
sensor. However, by now such sensors are not yet embeddable
and no human experiments have been conducted. Instead, in
order to validate the software, we used a data generator able
to mimic the drug concentration evolution of a real human.
The scheduling real-time properties of the implemented control
flow where verified within the TIMES tool. We have also
developed a new code synthesizer that allows the automatic
generation of the final code to be deployed on the Icycom
platform.
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The paper is organized as follows. In Section II we present
the heterogeneous space of the related and our prior work
showing how various methodologies and algorithms linked
to address the problem. Section III presents the Parametrized
SVM algorithm, as the core algorithm for medication regimen
adjustment. The control flow of the software implemented on
our prototype device as well as the newly developed code
synthesized are presented in Section IV. The actual prototype
implementation is described in Section V. In Section VI we
draw the conclusion over the presented work.

II. RELATED AND ESSENTIAL PRIOR WORK

Adherence to the medication regimen is usually computed
in relative percentage of times when the drug was taken
within the prescribed period vs the overall drug administration
events. The poor adherence causes a very high percentage of
medication-related hospitalizations [1]. Nonadherence can be
classified as unintentional, when patient fails to take a medica-
tion due to forgetfulness or carelessness, and intentional, when
the medication is avoided by some rational decision making
process based on perceptions, feelings and beliefs. Dealing
with intentional nonadherence has more of a social flavour. In
contrast, various technologies may help improving medication
adherence if it was not intended.

In [6] authors give a comprehensive overview of med-
ication adherence methods focusing mostly on smartphone
applications. They have evaluated 160 smartphone apps all
including a large list of options, with the main purpose of
reminding the patient to take a certain drug at specified periods.
Among the options they list: online data entry, complex
medication instructions, database of medications, tracking
missed and taken doses and many others. However, generally
these applications, in one way or another, send reminders
following the predefined static medication plans. Only one of
the applications is reported to have a feedback loop with a bio
degradable sensor swallowed together with each pill, which
can automatically give a precise information about when and
whether the pill was taken [7]. The rest of the applications rely
on patient responsibility to provide such feedback. Neverthe-
less, the option of tracking missed or delayed doses is used
only for computing the level of medication adherence. None
of the reported applications is able to provide a personalized
drug administration plan based on the misses or delays of drug
administration. Moreover, none of them is able to adjust the
medication plan based on occasional blood tests.

With our device we are targeting the unintentional non-
adherence. The reminders are given based on the person-
alized medication plan, where the plan is adjusted by the
algorithms. The adjustment can take into account both the
misses or delays of drug administration as well as seldom
TDM measurements. The safety-assured implementation of
the software for such drug administration devices requires the
use of specific software design techniques as well as several
algorithms. Therefore, the related and essential prior works are
covering a heterogeneous space of existing methodologies and
algorithms, including: (A) design methodologies for safety-
critical systems; (B) closed-loop drug administration; (C)
modeling of drug concentration curves; (D) decision-support
systems for dose adjustment; and (E) formal representation
of medical Guidelines (GLs). Figure 1 depicts the abstract

representation of the control flow of the prototype device. We
use this figure to show the interrelation of the above mentioned
technique as parts of heterogeneous space of the related works.

Figure 1: Interrelation of the techniques

A. Design methodologies

There exist several system-level design methodologies
helping to structure, plan, and control the process of developing
an information system [8]–[10]. In this section we will focus
on a frameworks allowing formal analysis of system properties
essential for the design of safety-critical systems.

BIP (Behaviour - Interaction - Priority) [9] is a framework
that relies on correct-by-construction methodology that allows
modelling of systems as composition of atomic components.
The behaviour of each atomic component is described as 1-safe
priority Petri-net, while components are interacting by means
of connectors [11]. Priorities are used to eliminate conflicts
between interactions and thus restrict non-determinism. BIP
provides verification means [12] and code synthesis techniques
for distributed architectures [13]. However, the use of BIP
for our case would be excessive, since the whole controlling
software can be represented with one BIP component, while
the code synthesis needs to be done for a specific platform.

Timed Automaton (TA) [14] is a formal model of compu-
tation used in embedded system design domain to describe a
system behaviour and its progress in time. TA is an extension
of the classical Automaton that is a finite state graph composed
of the finite set of locations Loc and transition relations (edges)
↪→. TA extends the classical Automaton with the finite set
of clocks, later in the text also called timers, C and a set of
constraints over clocks ClockCons(C), where constraints are
conjunctions, disjunctions and negations of atomic expressions
over clocks in the form x �� n,x ∈C,n ∈ N0 for ��∈ {<,≤,>
,≥,=}. Each location is characterized by an invariant (I) that
specifies a constraint on a clock under which TA can stay in
this location and/or enforce a transition to another location. An
edge of TA e = (l,g,a,r, l′) ⊆↪→ represents a transition from
l to l′ (l, l′ ⊆ Loc), where g is a guard of e, which indicates
when the transition can be executed, r is the set of clocks that
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is reset when the edge is taken, and a is the action of e, a⊆Act.
TAT [5] is an extension of TA with tasks that represent pieces
of code associated with locations of the model. The execution
semantics of TAT is the one of TA extended with a task queue.
Any time the task is triggered by a transition it is added to
the task queue, after which it will be executed upon a chosen
scheduling policy. The timed model checker UPPAAL [15],
implements TA extended with variables. A set of cooperating
TA is called a network of TA. The cooperation mechanism may
either make use of shared (global) variables or be realized as
joint execution of dedicated transitions, denoted as rendezvous
synchronization. TIMES tool [16] is the successor of UPPAAL
implementing TAT model.

For our purposes we employ a TAT model. The main
advantage of TAT is that it is supported by TIMES model
checking environments that allow automatic schedulability
analysis of the models it implements. In our prior works we
also employed TAT model for formal representation of medical
GLs (see Section II-E). Therefore, when using TAT, we can
model the control flow activating required computational tasks,
combine this control flow with the formal model of the GLs
and verify that all the essential deadlines will be met. The
original version of TIMES also provides platform independent
code synthesis from high level TAT models. In this paper we
present our extension of the TIMES code synthesiser (see
Section IV-B) for automatic code generation for the Icycom
platform (see Section V).

B. Closed-loop drug administration

The continuous medication regimen adjustment requires
the introduction of a feedback loop to provide the parameters
needed to calibrate the system. Those can be measurements
of specific biomarkers, the actual drug concentration and/or
adherence to the medication regimen. An example of drug
delivery control based on measuring specific biomarkers is
presented in [17], where the authors introduce a safety-assured
approach to the development of a Generic Patient Controlled
Analgesic (GPCA) infusion pump using TA model. The feed-
back loop is based on measuring such indirect marker as
SpO2 concentration in patient’s blood to evaluate oxygenation.
The low level of SpO2 indicates respiratory insufficiency and
thus the drug delivery must be stopped. However, usually for
many drugs used to treat chronic cases, including the case
of Chronic Myeloid Leukemia (CML), it is not required to
perform continues measurement of vital parameters.

This way, in the absence of real measurements of biomark-
ers or drug concentration the dose adjustment can be based on
offline models (see Section II-C) able to compute the drug
concentration-to-time (DCT) curve while accounting for how
neatly the patient was following the schedule. For instance, if
the patient has taken the drug with a delay, the model will
foresee the effect of such mistaken action into the change
in drug concentration. Nevertheless, occasional measurements
of plasma drug concentrations is essential for personalized
dose adjustment. Therefore, we would also like to be able to
calibrate such models once a valuable real TDM measurement
is available.

C. Drug concentration modelling

There have been several models developed in support of
Pharmacokinetic (PK) studies that are able to predict the drug
concentration in the blood [18] and account for new mea-
surements [2], [19]. Several personalized drug concentration
prediction method based on Support Vector Machine (SVM)
algorithm where presented in our prior works [20]–[22]. The
initial method was only able to perform a point-wise drug
concentration prediction, therefore, it is impossible to calibrate
in personalized manner the prediction every time when a new
measured concentration value is available for the patient under
treatment. The Drug Concentration over Time (DCT) curve
prediction approach, Parameterized SVM [23], used in our
implementation, combines the SVM and analytical models.
This method allows to introduce a mixed approach, in which
we unify an offline SVM-based drug concentration prediction
model, adherence to the medication regimen and occasional
direct TDM measurements of the real drug concentration in the
blood. The details of the algorithm are presented in Section III.

D. Decision-support Systems in Drug Administration

For the closed loop drug delivery we need to solve the
problem that is inverse to the PK modeling, e.g. providing the
recommendation of the dose and delivery rate based on the
drug concentration. In our prior work [21] we have introduced
a Drug Administration Decision Support System (DADSS)
to help clinicians/patients with the initial dose computing.
The system is based on a Support Vector Machine (SVM)
algorithm (see Section II-C) for estimation of the potential
drug concentration in the blood of a patient, from which a best
combination of dose and dose interval is selected at the level
of a DSS. In the current implementation we are employing
the above mentioned approach to solve the reverse problem of
computing the right dose and administration interval to reach
the target concentration.

E. Formal representation of medical GLs

Once the dose is computed we need to make sure that it
is effective and not harmful. This can be done by validating
the output of the DADSS system with a process mimicking
the decision of a medical doctor, which follows a medical GL.
Medical GLs for drug administration usually contain the medi-
cation regimen, dosages and scheduling, for classes of patients
and rules, based on which the medication regimen may be
changed. Therefore these GLs can be seen as the specifications
of an independent medical system able to take decisions re-
garding the changes of medical regimen. The automatization of
such decision-making requires the computer-interpretable GLs
representation. In our prior works [24], [25] we have presented
an example of medical GL representation applying the TAT
formal model. As was defined in Section II-A, TAT allows
modeling of a system by composing it out of several TAT
models combined into a network of interoperating automata.
This allows a step-by-step detalization of the system control
flow. For simplicity reason, in the control flow presented later
we only use the rules limiting the dosage and delivery interval
decided based on drug concentration models (see Section IV).
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III. ADJUSTMENT OF THE MEDICATION REGIMEN

The adjustment of the medication regimen of our proto-
type device is performed based on the Parameterized SVM
(ParaSVM) model able to predict the plasma drug concentra-
tion in the next cycle also accounting for the adherence to the
medication regimen, defined as the time of drug intake tintake,
and occasional TDM measurements. In cycles when no TDM
value is available, the time when the medication was taken is
given to the model to compute the drug concentration value
at that time. The output is the residual drug concentration that
needs to be accounted in the next cycle, while the time of
the next cycle trough value needs to be computed accordingly.
This way, both adherence to the medication and TDM mea-
surements are represented as plasma drug concentration value
over time, used to adjust the model at each administration
cycle.

As the input, the ParaSVM model requires a population
library of the plasma drug concentration samples, where each
sample is the concentration value in correspondence with the
time of measurements and patient parameters (e.g. weight, age,
gender, etc.) for whom this measurement was performed. To
build the analytical representation of the DCT curve, ParaSVM
uses the common basis functions β j = {t−2, log(t),1− e−t},
respecting the shape of DCT curve obtained from the PK
method [2], where t stands for time [22]. Therefore, the target
is to obtain the parameters y for the weights of β :

fconcentration = y ·β =
[
y1 y2 y3

]⎡⎣β 1

β 2

β 3

⎤
⎦ . (1)

Therefore, parameters {y1,y2,y3} together with patients fea-
tures form the Parameter Library being used as the training
data. Unlike in [20] and [26] where the SVM algorithm was
used to predict the drug concentration values based on patient
parameters, here the SVM algorithm is applied to learn the
mathematical relationship between the parameters of the basis
functions and then to predict the parameter values of the
DCT curve for a new patient in the testing dataset. With one
given measured concentration value, in case of a posteriori
adaptation, or a value of the residual concentration after the
previous dose intake, the curve parameters can be adjusted,
this way allowing to build the personalized DCT curve for
each next cycle.

In the general case of modelling N patient samples, the

form of patient samples becomes (xi,y1
i , · · · ,y j

i , · · · ,yNP
i ),

where i is the ID of a sample i ∈ {1,2 · · · ,N}, y j
i denotes the

j-th parameter value of this patient, and NP is the number of
parameters, which in our case is equal to three. The goal is
to find NP linear functions f j(x) = w j ·φ j(x)+b j to describe
the relationship between the dataset points and estimate the
parameter value y according to a new input dataset. For that we
need to minimize the following modified objective function:

min
w,b

1

2
||w||2 +C0

NP

∑
j=1

N

∑
i=1

[y j
i −w j ·φ j(xi)−b j]2

︸ ︷︷ ︸
H

, (2)

where H takes into account the combined difference of all
three predicted values plus the ones in the parameter library.

Note that this objective function has Root of Sum of Square
(RSS) fitting error and a regularization term, which is also a
standard procedure for the training of Multi Layer Perceptrons
(MLP) and is related to ridge regression [27], [28]. Applying
Lagrangian analysis to solve the optimization problem of
objective function, we obtain w as:

w j =
N

∑
i=1

α j
i φ j(xi). (3)

Combining Equ. (2) and (3), we can obtain a linear system:

[
K j + 1

C0
I 1

1T 0

][
α j

b j

]
=

[
y j

0

]
, (4)

where each entry of the kernel matrix K j is defined to be

K j
ab = φ j(xa)

T φ j(xb). A Gaussian Kernel is applied in a similar
way as in [20]. Therefore, the prediction function becomes:
f j(x) = ∑N

i=1 αiK j(xi,x)+b j.

For each next drug administration cycle we refine the DCT
curve computed by ParaSVM with either the real measured
concentration value or the residual concentration value from
the previous cycle computed with the same model taking into
account the time of the drug intake tintake. For model adaptation
we use the following constraints:

• The modified DCT curve has to pass through the given
measured concentration value;

• After a dose administration, the concentration
value should start monotonically growing:
∂gconcentration

∂ t |t=Tbp > 0, where Tbp is any time point
before the peak value and after tintake.

• After several hours, it reaches the peak value and

starts to decrease: ∂gconcentration
∂ t |t=Tap < 0, where Tap

is any time point after the peak value and before
tp′ is the distance from tintake until the end of the
fixed medication regimen cycle, e.g. pregimen = 24h.
Therefore, tp′ = pregimen− (tintake− tp), where tp is the
similarly computed end time of the previous cycle.

• Taking into consideration the residual concentra-
tion value, the difference between the tintake and tp′
should be within a certain threshold, i.e. < 50mcg/L.

|gtintake
concentration−g

tp′
concentration|< TH.

• The concentration curve whose shape is the most sim-
ilar compared with the one predicted from ParaSVM

will be chosen: mingr ∑ j=0,··· ,Ns(g
t= j
r − gt= j)2, where

gt= j stands for the concentration value at time j esti-

mated using the predicted parameters and gt= j
r denotes

the one in the refined curve. The set of parameters y
corresponding to the best gr are selected.

This way, using the above described constraints we can
adjust the DCT curve for each next drug administration cycle
taking into account not only the real concentration values but
also adherence to the medication regimen.
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IV. SAFETY-CRITICAL SOFTWARE DEVELOPMENT

In order to address the safety-criticality issue of the soft-
ware we first represent the control flow using TAT model that
was formally introduced in Section II-A. In this section we
introduce the control flow with the reminder for drug admin-
istration of imatinib, the drug used to treat Chronic Myeloid
Leukemia (CML). Then we present the code synthesizer for
the Icycom platform that we have developed as an extension
of the TIMES tool.

A. Control Flow

The control flow that can be ultimately executed on an
embedded electronic device is presented in Figure 2. For
simplicity we have eliminated most of the details of the model.

Figure 2: Synthesized control flow

It essentially follows the general feedback loop control
flow of Figure 1. It is divided into a priori regime, Reminder,
data aquisition, evaluation of body reaction, a posteriori
decision making and decision validation with GL rules blocks.
The variable T1 of the model is a clock (timer). At each
transition, the value of the clock is compared to a reference
intervals, e.g. plong, pdata, pT DM , pΔ, or pvalidation, representing
transitions time guards. Once the guard condition is satisfied,
the transition is taken and the clock is reset to zero. When
arriving to a new location, the task associated with this location
will be added to the scheduling queue to be further activated
with a chosen scheduling policy. Some transitions have guards
over the values of the drug concentration Cmin or the computed
dosage d dose. For example, the transition from the SVM-
TDM to Reminder location only occurs when T1 >= pT DM +
pΔ+ pvalidation and 750<=Cmin <= 1500. That means that the
model will spend minimum pT DM + pΔ + pvalidation of time in
the SVM-TDM location. When transition is taken, the clock T1

will be set to zero while the drug dosage will be set to the
dosage value of the previous cycle: dose := d dose. We fix

the values for the big remind intervals: one day premind or half
a day phal f ; while the dose can be changed with a finer grain
than in currently applied imatinib GL values defined by the
parameter Δdose (e.g., 50 mg).

The flow starts with the initialization of the peripheral of an
embedded device. Here the daily dose is also initialized with a
personalized value (d dose:=init dose) after being computed
externally using the algorithm in Section III. The period p is
first set to one day (p:=premind) in case the initial dose value
is less than 800 mg, while the actual dose to be administrated
is set to the daily dose (dose:=d dose).

The next location of the closed loop flow is Reminder. The
only outgoing transition from this location leads to the Get data
location and can be taken only when T1 >= plong. Here plong
is set to be such that the rest of the computation for medi-
cation regimen adjustment is computed right before the next
reminder: plong = premind − (pdata + pT DM + pΔ + pvalidation).
While the other reference intervals correspond to the worst
case execution time of the corresponding task, e.g. pT DM
is the maximum time required for the drug concentration
prediction task added to the queue in the SVM-TDM location.
The drug concentration prediction must be computed for each
drug administration cycle taking into account the adherence
to the medical regimen or the real measurement of the drug
concentration used to calibrate the SVM-TDM algorithm.

In the decision-making stage the decision about increasing,
decreasing or keeping the dose is taken. In the present example
we assume that the trough concentration value Cmin (at 24 or 12
hours after the last intake) should lay within the 750:1500 μg/l
range (750 μg/l<= Cmin <= 1500 μg/l) [29]. If Cmin<750
μg/l the daily dose will be increased (d dose += Δdose) and
decreased in case Cmin>1500 μg/l.

In the next stage we check if the value of the daily dose
and intake interval are conformed with the rules derived from
the formal representation of the imatinib GL presented in [25].
The rules are as follows:

1) dose >= 300 - the minimum dose assigned should
be not less than 300 mg;

2) dose <= 800 - the maximal dose assigned should be
not more than 800 mg;

3) dose >= 800 → p:=p/2, dose:=dose/2 - when the
dose is equal (or greater) than 800 mg it should be
administrated in two shots.

For example, when d dose>=800 mg the period must
be set to phal f and the dose divided by 2 for each drug
administration. The alarm (alarm1!) will also be generated
since the maximal dose defined by imatinib GL is exceeded.
The period will be set back to one day next time only after
the d dose falls down to 600 mg. An alarm (alarm2!) will be
generated when we reach the minimal dose value defined in
imatinib GL (300 mg). The generated alarm1! and alarm2!
will be captured by other model, not presented in this section,
that generated alarms packets to be sent to the PC.

B. Code Synthesizer

We have developed a code generator out of the TAT models
in TIMES toolbox for the Icycom platform. This way, the
more detailed version of the control flow presented above
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Figure 3: An example for the global variable handling

can be directly synthesized into the executable code. In the
synthesized model tasks such as Reminder, Get data, and SVM-
TDM represent the class of taks, the platform independent
C code for which must be developed separately. The control
flow modeled using Graphical User Interface (GUI) of TIMES
plays a role of a coordinator of the tasks (drivers) execution.
We have extended the existing platform independent TIMES
code synthesizer. The Icycom code generator synthesizes the
final code directly compilable for the Icycom platform. This
code incorporates the drivers C code as well as the platform
dependent coordination of task execution that invokes the tasks
based on a chosen scheduling policy. Further we describe some
details of the new code generator implementation.

Each embedded platform needs to be initialized. Therefore,
at the model level we have added an obligatory Init location
with an associated initialization task that can be modified and
adapted for any target platform independently from the control
flow. The Init function is present in our control flow depicted
on Figure 2, a priori regimen. It has to run before all other
tasks and be executed only once.

We have also reworked the implementation of the variables
passing through the network of automata. The global variables
defined in TAT can be evaluated in the guards and set in
assignments of the automata network. Their values can also
be modified in the task body, which may cause problem to
other tasks using the same global variable. Therefore, when
the task is added to the scheduling queue by the control flow,
the value of the global variable is copied to a local variable,
this way, variable modification within task execution does not
affect the value of the global one until the task is completed.
If the maximum number of the identical tasks in the queue is
greater than 1, then we implement a FIFO of local variables.
The task body first added to the scheduling queue will take
the first local variable. If the second one is added to the queue
before the first task of the same type is finished, the current,
not yet modified, value of the global variable will be stored
at the second position of local variables FIFO. The third task
will store the current value of the global variable at the third
position and so on. When the first task finishes, all the values
will be moved by one position up.

An example of time diagram for global variable passing
is presented on Figure 3. Let us assume that we have a
model with two tasks (except init) and a global variable dose.
One task named dose adj adjusts the value of the global

variable, and the other task named dose deliver delivers the
drug based on the value of the global variable. The maximum
number of the dose deliver task in the task queue is 2 and
the maximum number of the dose adj task is 1. The behavior
of tasks is shown in the upper graph while the changes of
the global and local variables are shown in the lower one in
Figure 3. The dose adj task is added to the queue at cycle
2 and keeps running for five cycles, until cycle 7. When it
is added to the task queue, the value of the global dose is
copied to the local variable, dose adj 0 local dose. The local
variable changes during the dose adj task execution. After the
dose adj task finishes, the value of dose adj 0 local dose is
copied to the global one, so the global dose is changed at
the 7th cycle. The dose deliver task is added to the queue
in the 4th cycle. Therefore, the global variable copied to the
dose deliver 0 local dose variable still has the unchanged
initial one. Thus, the first dose deliver task running during
the 8th and 9th cycle will use the initial value of dose.
This way of handling global variables passing is valid only
for the First Come First Serve scheduling policy. For other
scheduling policy, since the order of tasks execution might
change dynamically, the scheme will be more complicated. It is
essential to be aware of the global variables passing mechanism
when building new models.

V. PROTOTYPE IMPLEMENTATION

The target device for this drug monitoring and medication
adherence is implemented on a platform (Figure 4) based
on the Icycom processor [4]. This ultra-low power processor,
developed by the CSEM SA [30], runs at only 3.2MHz and
owns 96KB of on-chip RAM shared for code and data. An
RF radio interface is also embedded on-chip, allowing us to
exchange data with other Icycoms. The motivations behind the
use of this processor were mainly its very-low power con-
sumption and integrated radio communication. It makes it an
excellent candidate for future systems that could be embedded
in a Body Area Network (BAN). The obvious drawback of
such processors is the low amount of memory available. This
required specific optimization of the code generator, in order
to fit within the 96KB of RAM.

Figure 4: Icycom (under number 25), on an Icyboard

It is clear that the setup used for occasional drug concen-
tration measurement would require real embedded bio-sensors.
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Therefore, the platform also contains an interface for such
sensors. However, the sensors targeted by this study are not
yet embeddable and no human experiment has been conducted.
Instead, in order to validate the software, we used a data
generator able to mimic the drug concentration evolution of
a real human.

The full hardware setup is depicted in Figure 5. It consists
of two Icycom boards communicating wirelessly, where one
of them is connected to a PC through the RS232 port. The
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Figure 5: Hardware setup. The numbers denote the tasks

first Icycom on the left, “Icycom1”, is the portable drug
administration reminding device that communicates with the
second Icycom, “Icycom2”. The second Icycom just acts as a
bridge or radio gateway to enable the communication between
the first Icycom and a standard PC.

The abstract representation of the software running on
the first Icycom is the one presented in Section IV. The
implemented software was first modelled using TAT model
activating tasks execution at specific moments. We have used
basic profiling data to estimate the worst case execution time
of each task of the model. The periods of the model presented
on Figure 2 where calculated such that none of the tasks
will take longer than the specified period as described in
Section IV. The final code for the Icycom was generated using
the code synthesizer presented in Section IV-B. The actual
implementation of the tasks and its communication with the
PC is as follows:

1. Get the data: gets the drug concentration, its value and
time of the measurement, and/or the time when the last
dose was actually taken. For the actual representation
these data must be received by either reading the data
from the bio-sensor or some input device (e.g. button)
communicating the actual drug intake time. In our
prototype, these data are replaced with the simulated
values. Since the device may not always be connected
to the PC, the data are accumulated during the offline
period.

2. SVM-TDM: once there is the connection, the data
are sent to the PC to perform the computationally
intensive algorithms (see Section III) based on the new
data. In the current prototype we outsource the com-
putational algorithms to the PC due to the limitations
of the RAM memory on Icycom. The updated drug
concentration values are sent back to the Icycom for
further processing.

3. Adjust the next drug dosage based on the predicted
concentration computed in step 2.

4. The computed dosage is validated with the GL rules.

5. The reminder to take the drug or alarm signals are

produced. The reminder makes one of the diodes blink
while the alarm is sent back to the PC to be displayed.

It is obvious that in the offline mode the device will be
producing reminders based on the medication regimen defined
in the previous online mode while the computation of tasks 2-4
will be skipped. In case the complete algorithm is implemented
on the Icycom the medication regimen may be updated at each
cycle, even in the offline mode.

The software running on the second Icycom just forwards
what it receives on one of its interfaces (RS232 or radio)
to the other one in both directions. This allows seamless
communication between the PC and any remote Icycom.

In parallel with step 2, the dosage adjustments and new
measures are automatically sent to EzeCHieL [31] tool run-
ning on the PC. This software allows data interpretation for
Therapeutic Drug Monitoring. It offers a graphical interface
to display a concentration prediction, based on patient co-
variates and drug concentration measurements (see Figure 6).
It is exploited by the medical doctor and will store the new
data in a local database, in order to record any activity related
to the patient (dosages and measures).

Figure 6: EzeCHieL GUI: Interpreting drug concentration

VI. CONCLUSION

TIMES tool is a model checking environment that allows
the automatic verification of real-time properties of the control
flows with associated tasks modelled with TAT. The synthe-
sizer that generates the code that preserves timing properties of
the verified model is an important step towards a safety-assured
development of the medical control-flow software. With our
work we present a safe approach to software implementation
of a medication reminder with enabled personalization of the
medication regimen. We show case it with the imatinib case
study. However, thanks to the component based structure of
the software, the method can be applied to other cases by
replacing implementation of certain components. For example,
for implementing the reminder for the drug with another
medical GL, first of all, the administration periods will have to
be changed according the GL. Second, the technology of the
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bio-chip has to be chosen to measure this specific drug. Third,
the initial library for the ParaSVM algorithm should contain
samples of the corresponding drugs, while the algorithm will
stay unchanged. Fourth, the therapeutic range values of the
drug used to compare the Cmin need to be chosen for this
specific drug. And finally, the new GL rules must be extracted
from the drug administration GL of the new drug. All described
changes correspond mostly to parameters setting, while the
synthesis able control-flow structure remains the same. In the
future we would like to study the application of our approach
to the administration of drugs with faster pharmacokinetics,
e.g. analgesic drugs.
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