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Abstract—Prognostic modeling is central to medicine, as it
is often used to predict patients’ outcome and response to
treatments and to identify important medical risk factors. Logistic
regression is one of the most used approaches for clinical pre-
diction modeling. Traumatic brain injury (TBI) is an important
public health issue and a leading cause of death and disability
worldwide. In this study, we adapt CPXR (Contrast Pattern Aided
Regression, a recently introduced regression method), to develop
a new logistic regression method called CPXR(Log), for general
binary outcome prediction (including prognostic modeling), and
we use the method to carry out prognostic modeling for TBI
using admission time data. The models produced by CPXR(Log)
achieved AUC as high as 0.93 and specificity as high as 0.97,
much better than those reported by previous studies. Our method
produced interpretable prediction models for diverse patient
groups for TBI, which show that different kinds of patients
should be evaluated differently for TBI outcome prediction and
the odds ratios of some predictor variables differ significantly
from those given by previous studies; such results can be valuable
to physicians.

I. INTRODUCTION

Aims of this study include: (A) Provide accurate and informa-
tive prognostic models for traumatic brain injury. (B) Provide
a powerful new generic logistic regression method. It advances
the frontier of research on the following three important issues:

(1) Prognostic models are central to medicine; they are
often used to predict patients’ outcome and response to med-
ical treatments. Physicians routinely make their decisions on
patient treatment plan, screening, and ordering of tests and
procedures, based on the prognosis or likelihood of a disease
[17]. Prognosis models also help on the understanding of
diseases, including identifying discriminating variables highly
correlated with the outcome. Medicine is moving from a
traditional subjective one to an evidence-based one, which uses
prediction models built from population samples to inform
clinical decision-making [7]. Indeed, prediction modeling in
medicine has received increasing attention recently; e.g. the
number of articles listed in PubMed [23] with “prediction
model” in the title in 2012 is 7 times of that in 2000.

(2) Logistic regression is one of the most used approaches
for building clinical prediction models and its usage has been
increasing over the years. Indeed, most of those articles on
medical prediction modeling mentioned above used logistic
regression, as shown in Figure 1. Logistic regression models
are desirable since they are flexible (they can incorporate
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both categorical and continuous predictors, as well as non-
linear transformations) and they provide probabilities for the
predicted outcomes.

(3) TBI is an important public health problem and a leading
cause of death and disability worldwide: Every year, more
than 1.5 million people die and hundred of millions need
emergency treatment [14]. In the US, CDC estimated that 2.4
million emergency room visits, hospitalizations and deaths are
related to TBI and $76.5 billion dollars including direct and
indirect cost (excluding combat related treatments) in 2010
[21]. While confident predictions could usually be made 24
hours after the injury, they are hard to make at admission
time [9]. Physicians need to make vital decisions ranging from
whether to perform/withdraw certain treatment based on their
prognosis evaluation [15], and they need accurate prognostic
models that only use admission time data to make time-critical
clinical decisions.

Challenges in clinical modeling include the following five
(some are for general predictive clinical modeling and some
are for prognostic modeling for traumatic brain injury). (a)
Accuracy of prediction models is the most important aspect
for clinical prediction modeling, as making a wrong decision
in medicine may put a human’s life in danger. (b) Prediction
models for medicine should be easy to interpret, so that
physicians can (i) explain critical medical decisions to patients
and their families and (ii) can identify the important risk factors
for the disease under consideration. (c) Prediction models for
medicine should avoid overfitting as much as possible, so
that they can be used to make accurate predictions on new
cases. (d) Prediction models should allow physicians to make
early decisions. This is often critical, as an early decision will
allow hospitals to make early effort on patients who will likely
benefit from the treatment. For traumatic brain injury, correct
treatment decisions made at time of admission, with admission
time data, will help the patient to recover better, while delayed
decision will diminish their chance of recovery. (e) As will
be discussed in the Related Work section, traumatic brain
injury patients in different population groups require different
prediction models. In fact, as will be shown in this study,
this heterogeneity is not limited to known population groups;
TBI is an illness having diverse predictor-response variable
relationships' [5].

'When we say “an illness has diverse predictor-response relationships”, we
mean the data associated with the illness contains multiple logical data groups
whose fitted regression models are highly different. Illness can be other things.
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Our approach and advantages: In this study, (1) we adapt
CPXR (Contrast Pattern Aided Regression, a recently intro-
duced regression method), to develop a new logistic regression
method called CPXR(Log), for general prognostic modeling
and binary outcome prediction, and (2) we apply it to traumatic
brain injury outcome prediction. The CPXR(Log) algorithm
constructs a pattern aided logistic regression model defined by
several patterns and several associated local logistic regres-
sion models. Like CPXR, CPXR(Log) has several significant
advantages including high prediction accuracy and ability to
handle data with diverse predictor-response relationships, often
outperforming standard logistic regression and state-of-the-art
classifiers on various accuracy measures. The prediction mod-
els produced by CPXR(Log) are easy to interpret. The ability
for effectively handling data with diverse predictor-response
relationships is especially useful in clinical applications, as
modern medicine is becoming more and more personalized.

Goodness of our results on prediction modeling for TBI:
For prognostic modeling on TBI using admission time data,
the models produced by CPXR(Log) achieved AUC as high
as 0.93 and specificity as high as 0.97, much better than
those reported by previous studies. Each prediction model
produced by CPXR(Log) contains several interpretable local
prediction models for different patient groups for TBI, indi-
cating that there are several different kinds of patients that
should be evaluated differently for TBI outcome prediction.
We present a complete CPXR(Log) prediction model, con-
taining the patterns and the local logistic regression models,
for the Unfavorable dichotomized version of GOS using 15
predictor variables. We also study the odds ratio differences
of the predictor variables based on different logistic regression
models; we provide predictor variables whose odds ratios in
some local model (of the CPXR(Log) model) differ from
that in the global model significantly (including variables
whose odds ratios change by more than 6 folds). The example
CPXR(Log) model demonstrates that CPXR(Log) can also
extract informative multi-variable outcome-related interactions
among subsets of variables, which are hard to identify by
standard logistic regression when the number of variables is
large.

Organization: Section II is on related work. Section III gives
preliminaries. Section IV presents the CPXR(Log) algorithm.
Section V reports results on TBI. Section VI concludes.

II. RELATED WORK

The related works belong to two main groups.

(a) Studies on general clinical prediction models: Clinical
prediction modeling is a very broad and active area of research.
Most recent articles on clinical prediction modeling used
Logistic Regression (e.g. [1]), while others used methods such
as Decision Trees (e.g. [2]), Random Forest (RF) (e.g. [10])
and Support Vector Machine (SVM) (e.g. [20]); See Figure 1.

(b) Studies on TBI related prediction models: Many studies
have been reported on prediction modeling for predicting the
outcome after traumatic brain injury. A pre-eminent study is
the project of IMPACT (International Mission for Prognosis
and Analysis of Clinical Trials in TBI) [24], which collected
data for nearly 10 years and developed and validated many
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Fig. 1: Number of prediction-modeling articles published in
PubMed with “Logistic Regression”, “Decision Tree” and
“Support Vector Machine” in the titles between 2000 and 2012.

prognostic models for classification and prognostic risk calcu-
lation. In [12], Murray et al. examined important risk factors
on TBI patients’ outcome based on a cohort of 8686 patients
from multiple clinical trials. They fitted a proportional odds
model and found age, GSC score, pupil response and CT
characteristics are the most powerful prognostic risk factors.
Hukkelhoven et al. [8] performed a study to detect critical age
threshold on TBI patients’ outcome on a set of 5600 patients.
CRASH (Corticosteroid Randomization After Significant Head
Injury) [22] is another major trial on TBI which ended up with
10008 patients; it also developed prognostic models and risk
calculators. Reference [19] built prognostic models to predict
Mortality and Unfavorable, where the outcome classes are
determined based on the GOS score at 6 months after the
surgery, using Logistic Regression. Reference [2] developed
similar models using decision tree analysis. Reference [13]
found that heterogeneity of head injuries is a challenge in TBI
prognostic models; CRASH [11] found that prognostic models
for TBI patients’ outcome for low, middle and high income
countries differ significantly, which is in agreement with the
heterogeneity findings of [13].

III. PRELIMINARIES

A. Preliminaries on logistic regression

Regression analysis aims to design regression models to
predict response variable values, based on predictor variables’
values. For clinical prediction modeling one often builds mod-
els to predict categorical response variable values (classes);
for example, for diagnostic modeling one may want to predict
“having disease” or “not” and for prognostic modeling one
may want to predict “the outcome is mortal” or “not”.

For logistic regression, the response variable has two val-
ues, 0 and 1, representing the two classes with 1 representing
the class of interest. Let x1,...,x, be the predictor variables.
A vector of values of the predictor variables is an instance, to
be denoted by X below. The response variable will be denoted
by Y. Logistic regression uses a set {(X;,Y;) | 1 <i < m}
of instance and response variable value pairs as training data.



The goal of logistic regression is to find a lin-
ear function Ip(X) Bo + >, Bi x x; satisfying
log([P(Y=1)/(P(Y=1) 4+ 1)]) = Ip(X). (The lefthand side
is often written as log(odds(P(Y=1)) and logit(P(Y=1)).)
Solving for P(Y=1) one gets P(Y=1) = eP(X) /(1+4¢P(X)) =
1/(1 4 e~'*(X)), The coefficients /3; are usually, though not
always, estimated by iterative likelihood maximization. The
resulting logistic regression model is f(X) = 1/(14e~ (X)),

There are many ways to measure goodness of fit of any
given logistic regression model g. One commonly used one is
the Chi-square (x?) statistic. Standardized residual (also called
Pearson’s residual) of g on a particular instance X is

Y — g(X;)
i = ey
9(Xi)(1 - g(X3))
and then the Chi-square statistic (x2) of g is
m
X9 = rf ©))
i=1

B. Preliminaries on patterns and discretization

Let D be a training data set for regression. For the pattern
part, we ignore the outcome variable. To avoid using too many
symbols, we will still denote the projection of D onto the
predictor variables as D.

We usually use the entropy based method [6], to partition
ranges of numerical variables into disjoint intervals (bins) that
are as pure as possible. Bin boundaries will be used in patterns.

An item is a single-variable condition of the form “A = a”
if A is a categorical variable, or “v; < A < vy”, where v, and
vg are constants (usually the bin boundaries), if A is numerical.
A pattern or itemset is a finite set of items. An instance X is
said to satisfy, or match, a pattern P, denoted by X = P, if X
satisfies every item/condition in P. The matching data of P in
D is mds(P,D) = {X € D | X = P}. The support of P in
D is supp(P,D) = w. We may generalize the above
by using a subset D’ of D to replace D, as in supp(P, D").

Intuitively, a pattern is a contrast pattern if its supports in
different classes are very different. Formally we have:

Definition 1: [4] Given two data classes C; and C,, the

support ratio (also called growth rate) of a pattern P from C}

to Cs is? suppRatiogf (P) = %. Given a support ratio

threshold ~, a contrast pattern (also called emerging pattern)
2 (P

of class Cy is a pattern P satisfying suppRatio/? ) > .

In addition to ~, in this paper we will also use a threshold,
minSup, on contrast patterns in the LE class (see below).

IV. THE CPXR(LOG) ALGORITHM

This section presents the Pattern Aided Regression model
(PXR) and the Logistic Contrast Pattern Aided Regression Al-
gorithm (CPXR(Log)) that constructs highly accurate logistic
PXR models. PXR and CPXR for linear regression were both
introduced in [5] for the linear regression case. This section

2If supp(P, C1) = 0 we define the ratio as a large number such as 2|Cs|
and we also call P a jumping emerging pattern.
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will discuss how to adapt CPXR, to build logistic PXR models
instead of linear ones.

Let D = {(X;,Y:) | 1 < i < n} be a given training data
set for regression. Let f be a regression model built on D,
which we will call the baseline model on D.

A. Pattern aided regression model (PXR) concepts

The main ideas in the pattern aided regression model type
introduced in [5] are (a) to use a pattern P as a logical
characterization of a specific group of data, and a local
regression model fp as a behavioral characterization of the
intrinsic predictor-response relationship fitting that group of
data, and (b) to use a small set of patterns and associated
local regression models for several groups of data to define a
regression model for all data.

We will say a PXR model is a linear PXR model if its
local regression models are linear, and similarly for logistic
PXR models.

PXR’s strength lies with its flexible use of a pattern
and local-regression-model pair to represent one particular
predictor-response relationship for one group of data, and with
its use of multiple pattern and local-model pairs to represent
multiple predictor-response relationships, for different logical
groups of data. The ability to represent diverse predictor-
response variable relationships was considered as the main
reason why linear PXR models obtained by CPXR significantly
outperform state-of-the-art linear regression models [5]. As
will be seen later, logistic PXR models can achieve much
more accurate prediction than state-of-the-art logistic regres-
sion models.

Definition 2: [5] A pattern aided regression (PXR) model
is a tuple PM = ((Py, f1,w1), e, (P, frywi), fa), where
k > 0 is an integer, Pi,..., Py are patterns, fi, ..., fx, fa
are regression models, and wy, ..., w, > 0 are weights. The set
{P1,..., P} is the pattern set of PM, f; is the local regression
model of P;, and f; is the default regression model. We define
the regression function of PM, for each instance X, as

{ EPiEwazfz(X) lfﬂ-X?é@

Epenyx Wi
otherwise
where mx = {P; | 1 <14 <k, X satisfies P, }.

fru(X) = 3)

fa(X)

Remark: f; is only applied to instances x satisfying P;, and
fa is only used when x does not satisfy any P;.

We typically define w; based on f;’s residual reduction.
Moreover, for each pattern P, in this paper we use a standard
logistic regression method to build a local logistic regression
model fp. So f; is fp, in the above definition.

B. Quality measures on patterns and pattern sets

CPXR(Log) needs to efficiently find a desirable pattern set,
from huge search spaces of potential pattern sets, in order to
build an accurate prediction model. We need quality measures
on individual patterns and on pattern sets, to remove patterns
that have little hope of being useful and to perform efficient
incremental search of pattern sets respectively.

Let 7x(g) denote a function ¢’s residual on an instance X.



Definition 3: The average residual reduction (arr) of a
pattern P w.r.t. a prediction model f and a data set D is

o EXEmds(P) |TX (f)| - EXEmds(P)|’r'X(f1D)|
a Imds(P)]

arr(P) “

The total residual reduction (irr) of a pattern set PS =
{Pi,..., P} wrt. a prediction model f and a data set D is

Y xemds(Ps)|7x (f)] = Exemds(ps)|mx (frar)l
Yxeplrx(f)
5)

where PM ((P17fP1aw1)7-“:(le.kaawk)vf)v w; =
arr(P;), and mds(PS) = Upcps mds(P).

trr(PS) =

The arr measure will help filter out patterns of little value
and will define weights for patterns in PXR models. The trr
measure will be used for pattern set selection.

C. Description of the CPXR(Log) algorithm

To save space, we give a verbal description of CPXR(Log),
omitting the pseudo-codes; it is very similar to CPXR [5] ex-
cept that it uses logistic regression instead of linear regression,
it builds the baseline regression model in the algorithm by
default, and it uses the baseline model as the default model.

The CPXR(Log) algorithm takes three inputs: a training
data set D for logistic regression, a ratio p for dividing D into
large error (LE) and small error (SE) parts, and a minSup
threshold on contrast patterns.

First, CPXR(Log) builds the baseline regression model f
using a standard logistic regression method (e.g. the implemen-
tation in the R package). Then it uses p to determine a split
value k, to partition D into LFE (large error) and SE (small

M' Then CPXR(Log)
D ven Irx (N
mines the contrast patterns of LE. Then it selects just one

pattern having the shortest length from each equivalence class
of patterns as candidate for subsequent consideration. (An
equivalence class of patterns is a set of patterns with the
same mds, defined by the equivalence relation given by:
patterns P and () are equivalent iff mds(P) mds(Q).)
Then it uses some filters (see [5]) to remove patterns that
are highly similar to others. Then it builds fp for each
remaining contrast pattern of LE, and removes patterns that
yield little residual reduction. Then it uses a double loop to
search for a desirable pattern set with large trr: The inner
loop performs repeated pattern replacements, and the outer
loop adds a new pattern to the pattern set and then calls
the inner loop (both aimed to improve trr). The inner loop
terminates when the improvement of the best replacement is
too small. The outer loop terminates when the improvement
of the previous iteration is too small. Let PS = {Py,..., Py}
denote the resulting set of patterns. Then CPXR(Log) returns
PM ((Py, fp,,art(P1)), ..., (P, fp,,arr(Pr)), f) as the
resulting PXR model. For this paper, all local regression
models are built by the standard logistic regression algorithm.
In general, the algorithm also builds a logistic regression model
fa for the set of instances that do not match any P; (1 < ¢ < k)
and uses it in the place of f in PM.

error) parts, so that p ~
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V. EXPERIMENTAL RESULTS

This section presents the results of CPXR(Log) on pre-
diction of 6-month outcome after moderate or severe TBI.
It has two focuses, one on accuracy of CPXR(Log) models
and the other on new insights on TBI offered by CPXR(Log)
models (which could be useful to medical scientists and physi-
cians). (a) For the former, we mostly compare CPXR(Log)
against standard logistic regression (denoted by SLogR),
while briefly comparing against state-of-the-art classification
algorithms such as SVM and RF. The results indicate that
CPXR(Log) is more accurate, outperforming SLogR and others
significantly. (b) For the latter, the CPXR(Log) models present
new patterns that capture outcome-related interactions among
variables and that define groups of patients whose outcome
should be predicted using their own local prediction models
instead of the SLogR model. Moreover, based on CPXR(Log)
we present variables having high odds ratio for certain patient
groups (defined by patterns used by the CPXR(Log) models)
and having low odds ratio based on the SLogR model. We
believe that important variables for TBI include those whose
CPXR(Log) based odds ratios differ from their SLogR based
odds ratio by large margins, and those that occur in patterns
used by the CPXR(Log) models.

Regarding parameters, we used fixed values minSup =
0.02 and p = 0.4 for’ CPXR(Log), and we used default
settings of the R [16] packages for SLogR, SVM and RFE.
Running time and memory usage are given in this footnote®.

A. Background information

The TBI dataset considered in this study5 is from [17],
which will be called TBI in this paper, on patients from an
International and US Tirilazad trials. It contains 2159 instances
and 15 predictor variables; its missing predictor variable values
were treated using multiple imputation as suggested by [17].

The outcome variable of TBI is assessed with the Glas-
gow outcome scale (GOS), which has been widely used in
brain injury studies. The scale ranges from dead (GOS 1),
vegetative state (GOS 2), severe disability (GOS 3), moderate
disability (GOS 4), to good recovery (GOS 5). The predictor
variables belong to three groups: Basic variables (4): cause of
injury, age of patient, GCS motor score, and pupil reactivity.
Computed-tomography variables (7): hypoxia, hypotension,
CT characteristics (Marshall CT classification), traumatic sub-
arachnoid hemorrhage (tSAH), epidural hematoma (EDH),

3While CPXR(Log) is very similar to CPXR given in [5], there are some
important technical differences, including the choice of p, used for splitting
data into LE and SE. For linear regression, we found that [5] having p in
the range of 0.45 and 0.65 usually yields the best PXR models. For logistic
regression, it turns out that the best choice is around p = 0.4 for the TBI
data for the three sets of predictor variables. (Different choices of p yielded
AUCs as follows, for Mortality using (Basic+CT) variables (see below):
p = 0.25:AUC= 0.84, 0.30:0.84, 0.35:0.88, 0.38:0.882, 0.4:0.88, 0.45:0.87,
0.55:0.85.) This might be caused by the difference between the distribution
of logistic residuals (Pearson’s residuals) and that of linear residuals.

4When building CPXR(Log) models for Mortality, on a Windows 7 machine
with 2.90 GHz CPU and 8GB RAM, with CPXR(Log) coded in Java: 5
minutes and 4 MB of memory for the Basic variables, 20 minutes and 9
MB for Basic+CT, and 45 minutes and 17 MB for Basic+CT+Lab.

Dr Steyerberg kindly shared this dataset with us. In general, datasets on
traumatic brain injury are not publicly available and hence we are limited to
this dataset in this paper. We plan to use our method to carry out prognostic
modeling on other traumatic brain injury datasets if they become available.



compressed cistern at CT, and midline shift more than Smm.
Lab variables (4): glucose, ph, sodium and hb (hemoglobin)
Details on these predictor variables can be found in [11], [17].

Prognostic models studied consist of all six prognostic mod-
els for the six combinations of two dichotomized versions of
GOS and three subsets of variables. These combinations were
examined in previous studies [11], [17] on TBI, allowing us
to compare the performance of our method against [11], [17].

The two dichotomized versions of GOS are: mortality
(versus survival) and unfavorable outcome (versus favorable
outcome). For the first, called “Mortality”, all cases with the
dead outcome (GOS 1) belong to the “mortal” class and all
others (GOS 2-5) are in the “survival” class. For the second,
called “Unfavorable”, all cases with dead, vegetative and
severe disability outcomes (GOS 1-3) are in the “unfavorable”
class, whereas all cases with moderate disability and good
recovery outcomes (GOS 4-5) are in the “favorable” class.

The three variable sets considered are: Basic, Basic+CT,
and Basic+CT+Lab, consisting 4, 11, 15 variables respectively.

Notations: We add qualifiers to the names of models
to avoid confusion. Specifically, we will use Method-
DichotomizedName-VariableSet as model names. For example,
the SLogR-Mortality-(Basic+CT) model refers to the model
built by SLogR for Mortality using the Basic+CT variables.

B. Evaluation on prognostic model accuracy measures

We now compare CPXR(Log) against SLogR on several
measures concerning model accuracy. The results show that
CPXR(Log) outperforms SLogR consistently and by big mar-
gins. The strong outperformance implies that TBI has diverse
predictor-response relationships [5].

Tables I and II present® 7 ® the performance of prognostic
models built by SLogR and CPXR(Log). Figure 2 shows
the ROC curves of all six models developed by SLogR and
CPXR(Log); solid lines represent curves of SLogR and dashed
lines represent curves for CPXR(Log). (Figure 3 compares
ROC curves of CPXR(Log) against that of SVM and RF.)

Apparently, all six CPXR(Log) models outperformed cor-
responding SLogR models on all performance measures. In
particular, AUC of all CPXR(Log) models improved that
of SLogR models by 11.7% on average (all six models),
and the improvement was 12.9% for Mortality models and
10.4% for Unfavorable models. Moreover, on average over
all six models, specificity, sensitivity, accuracy, and x? of the
Basic+CT+Lab models built by CPXR(Log) improved over
those of SLogR by 8%, 18%, 16% and 28% respectively.
Interestingly, CPXR(Log) achieved more improvement over
SLogR on x? concerning Mortality models than Unfavorable
models: The average improvement for Mortality models is
29.4% and it is 26.3% for Unfavorable models.

SThe results reported here agree with those reported in [18]

7Specificity, sensitivity and accuracy are for the classifier using the logistic
regression models with 0.5 as cutoff: If the predicted value is larger than 0.5
then the predicted class is 1, otherwise the predicted class is 0.

8Sensitivity is the proportion of actual positives which are correctly iden-
tified as such. Specificity is the proportion of negatives which are correctly
identified as such. We omit definitions of other measures to save space.
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TABLE III: AUC improvement when more variables are used
by CPXR(Log) and SLogR

Mortality Unfavorable
Variable set change CPXR(Log) | SLogR | CPXR(Log) | SLogR
Basic — Basic+CT 10% 7.7% 6% 5.2%

Basic+CT — Basic+CT+Lab
Basic — Basic+CT+Lab

4.5%
15.0%

2.5%
11.1%

6.8%
13.4%

1.25%
6.6%

TABLE IV: AUC improvement by CPXR(Log) over SLogR
for given variable sets

Mortality Unfavorable
Basic ‘ Basic+CT ‘ Basic+CT+Lab Basic ‘ Basic+CT ‘ Basic+CT+Lab
11.1% | 12.8% | 15% 79% | 8.8% | 14.8%

One main strength of CPXR(Log) is its ability to effectively
utilize more variables to derive more accurate models, which
is similar to CPXR for linear regression [5]. Indeed, while
both CPXR(Log) and SLogR obtained improvement on AUC
when more variables are used, CPXR(Log) obtained larger
improvement in all cases (see Table III). Moreover, when more
variables are used, CPXR(Log) achieved larger improvement
on AUC over SLogR, as shown in Table IV. CPXR can also
effectively extract useful information capturing interactions
among multiple predictor variables that are often missed by
standard logistic regression methods and other classification
algorithms (see §V-C).

Interestingly, Figures 2 and 3 show that the ROC curves
of CPXR(Log) always have larger true positive rate for every
false positive rate, than that of SLogR, SVM, and RF.

Remark: For both SLogR and CPXR(Log), prognostic models
for Mortality are more accurate than those for Unfavorable,
suggesting that the unfavorable class is harder to model.

Overfitting: Overfitting is a major issue in clinical prediction
modeling; it happens when a prediction model (or classifier) is
much more accurate on training data than on test data that are
unknown to the model. Overfitting models are not desirable,
as end users including physicians cannot be very confident in
using them to make predictions on new cases. When comparing
prediction models, more accurate models are preferred; among
equally accurate models, the less overfitting ones are preferred.

One method to evaluate prediction models with respect to
overfitting is to examine how big is the drop on given goodness
measures, from training data to test data. To that end, we split
the TBI dataset into training (2/3) and test (1/3), for the Un-
favorable dichotomized version using Basic+CT variables. We
train prognostic models using CPXR(Log), SLogR, SVM and
RF on the training data. Figure 3 shows the ROC curves and
the AUCs of the models built by the mentioned algorithms on
the test data. Interestingly, the AUCs of SVM, RF, CPXR(Log)
and SLogR on the training data are 0.94, 0.92, 0.94 and
0.84 respectively. Hence, the AUCs of SVM, RF, CPXR(Log)
and SLogR dropped, from training data to test data, by 25%,
22%, 8.5% and 5% respectively. CPXR(Log) and SLogR have
much smaller drops than SVM and RF. Combined with the
fact CPXR(Log) has much higher AUC and other measures
concerning accuracy than the other three, CPXR(Log) is the
winner on overfitting.



TABLE I: SLogR performance on accuracy

Mortality Unfavorable
Model Specificity Sensitivity Fq Accuracy AUC X Specificity Sensitivity Fq Accuracy AUC X2
Basic 0.95 0.18 027 | 0.77 0.72 2192 | 0.85 0.52 0.59 | 0.72 0.76 2174
Basic+CT 0.95 0.32 042 | 0.8 0.78 2183 | 0.85 0.6 0.66 | 0.75 0.8 2172
Basic+CT+Lab | 0.94 0.36 046 | 0.8 0.8 2094 | 0.84 0.61 0.66 | 0.75 0.81 2137
TABLE II: CPXR(Log) performance on accuracy
Mortality Unfavorable
Model Specificity | Sensitivity Fy Accuracy | AUC | x? Specificity | Sensitivity Fy Accuracy | AUC | x?
Basic 0.96 0.18 028 | 0.78 0.8 1801 | 0.89 0.54 0.63 | 0.75 0.82 1848
Basic+CT 0.96 0.42 0.53 | 0.85 0.88 1483 | 0.87 0.65 0.7 0.79 0.87 1601
Basic+CT+Lab | 0.97 0.46 0.58 | 0.89 0.92 1290 | 091 0.72 0.76 | 0.87 0.93 1327
% BN AUC_CPXR(Log) = 0.8 % 24 AUC_CPXR(Log) = 0.82 % 24 AUC_CPXR(Log) = 0.88
% AUC_SLogR = 0.72 % AUC_SLogR = 0.76 % AUC_SLogR = 0.78
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Fig. 2: Comparison of CPXR(Log) and SLogR: ROC curves and AUC
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Fig. 3: ROC curves and AUC of CPXR(Log), SLogR, SVM,
and RF on test data of models built from training data
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C. The CPXR(Log)-Unfavorable-(Basic+CT+Lab) model and
important predictor variables for TBI

Tables VI and VII give patterns and the local regres-
sion and baseline models of the CPXR(Log)-Unfavorable-
(Basic+CT+Lab) model, respectively. Table V compares odds
ratios” !0 of variables in the SLogR and CPXR(Log) models.

90dds ratio (OR) is a popular measure to quantify how strongly the level of
a predictor variable x; is associated to the response variable [3]. The odds ratio
of z; is often estimated from a logistic regression model as OR(x;) = e,
where 3; is the coefficient of x; in the logistic regression model.

101 Jogistic regression, we need to convert categorical variables into dummy
variables. To avoid redundancy, one of the values of each categorical variable
should be omitted (“treated as reference category”). We chose the most
common value of each categorical variable as the reference category. A
categorical variable for a local regression model becomes constant if the
variable occurs in the pattern of the local model and is hence a constant.
Reference categories and categorical variables involved in the patterns are
both specified as “ref” in Tables V and VII.



Large differences in odds ratio can be of interest to physi-
cians, as they indicate that for certain large population groups
risk should be evaluated in a manner different from how risk
is evaluated based on the SLogR model. Due to the popularity
of SLogR, one can assume that physicians are familiar with
SLogR models and they may have been using the information
implied by such models in practice. Large difference can be for
cases where odds ratio in CPXR(Log) models is significantly
higher or lower than that in SLogR models.

There are quite a number of variable and value pairs
where odds ratio differences are large. In Table V, we use
the bold font to indicate such pairs where the odds ratio in the
CPXR(Log) model is at least twice of that in the SLogR model,
and we use the italic font to indicate cases where the odds ratio
in the CPXR(Log) model is at most half of that in the SLogR
model. We use underline to indicate some other cases where
the odds ratio in the CPXR(Log) model is much larger than
that in the SLogR model although not at least twice as much.
To save space we omit rows having no large differences.

The largest odds ratio difference is 6.40 fold, for 6.79 <
PH < 7.67, whose odds ratio is 0.84 according to SLogR
model and it is 5.38 for Model I of CPXR(Log). The
largest odds ratio difference in absolute value is 7.07, for
reactivity = “No reactive”, whose odds ratio is 2.66
according to SLogR model and it is 9.73 for Model II of
CPXR(Log). The largest odds ratio decrease is 16.8 fold, for
6.79 < PH < 7.67 whose odds ratio is 0.84 according to
SLogR model and it is 0.05 for local Model VI of CPXR(Log).

TABLE VI: Pattern, arr, coverage of local models of
CPXR(Log)-Unfavorable-(Basic+CT+Lab) model

Patterns arr Cov Model
(CT classification = IIT) 15% 20% 1
(CT classification = V) AND (midline shift more than 12% 15% 11
Smm) AND (0.56 < glucose < 10.4 )
(No compressed cistern) AND (No midline shift more 10% 40% 11
than 5Smm) AND (7.22 < PH < 7.45)
(10.77 < glucose < 21.98)AND (134 < sodium < 144) 18% 18% | VI
(No Hypotension)AND (134 < sodium < 144) AND 19% 20% v
(10.55 < HB < 14.57) AND (With tSAH)
(No tSAH) AND (134 < sodium < 144) AND (10.77 19% | 20% | VI
< glucose < 21.98) AND (No Hypotension) AND (No
midline shift) AND (One reactive pupil)
(No tSAH) AND (One reactive pupil) 18% 40% VII

Table VI presents!! patterns used in CPXR(Log) model,
together with their arr and support. (The support of the baseline
model is 23%.) Multiple items in a pattern are joined by AND.

Important variables having large odds ratio changes or
occurring in patterns: Our analysis with the CPXR(Log)
model also shows that certain predictor variables are important.
We found that all numerical variables with large ranges are
important. Moreover, all variables occurring in patterns of
the CPXR(Log) model are important. Finally, all categorical
variables with large odds ratios in some local model or in the
baseline model are important; the top six of such variables are
(starting from the one with largest odds ratio):

Pupillary reactivity, CT classification, PH, Cisterns

compression, Cause, and Hypoxia.

An example where the CPXR(Log) model corrected a
large prediction error: Consider this 15 year old patient

1{SAH stands for Traumatic Subarachnoid Hemorrhage. Moreover, C'ov
denotes the support of patterns in the whole data set.
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with TBI due to a motorbike accident, who has the following
characteristics at the admission time:

GCS motor score = 5. No reactive pupil. No hypoxia.
No hypotension. CT scan = V. No tSAH. Has epidu-
ral hematoma. Has fully compressed cisterns. Has
midline shift. Glucose = 9.06 mmol/l. PH = 7.37.
Sodium = 141 mmol/l. Hb = 14.4 g/dl.

Since the patient is young, having no evidence of hypoxia,
hypotension and tSAH, the baseline regression model built
by SLogR predicts that the patient’s probability of survival
is 0.78. However the observed outcome (after 6 month) is
dead. In contrast, since this patient matches pattern II of
the CPXR(Log) model, i.e., “(CT classification = V) AND
(midline shift more than Smm) AND (0.56 < glucose <
10.4)” is true, the CPXR(Log) model more accurately predicts
probability of survival to be just 0.31, using local model II
in Table VII associated with this pattern. (“CT scan = V”
means “high lesion > 25 mm and not surgically evacuated.”)
Incidently, in our analysis, we found that the SLogR model
made many big prediction errors on young patients.

VI. CONCLUSION

We provided an effective new method, CPXR(Log) for
logistic regression and for clinical predictive modeling.
CPXR(Log) achieved much higher accuracy than standard
logistic regression on traumatic brain injury (TBI). We also
presented our CPXR(Log) model on TBI on admission time
data, including patterns and local models, and presented new
odds ratios of predictor variables based on CPXR(Log), includ-
ing those whose odds ratio differ from the SLogR model based
odds ratios. We hope that these findings will have significant
value in accurate clinical prognostic decision making, includ-
ing on TBI. In general, CPXR(Log) can effectively handle data
with diverse predictor-response relationships.

Acknowledgement: We thank the anonymous reviewers for
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