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Abstract—The Electroencephalogram (EEG) is often 
contaminated by muscle artifacts.  EEG is a widely used 
recording technique for the study of many brain related diseases 
such as epilepsy.  The detection and removal of muscle artifacts 
from the EEG signal poses a real challenge and is crucial for the 
reliable interpretation of EEG-based quantitative measures. In 
this paper, an automatic method for detection and removal of 
muscle artifacts from scalp EEG recordings, based on canonical 
correlation analysis (CCA), is introduced. To this end we exploit 
the fact that the EEG signal may exhibit altered autocorrelation 
structure and spectral characteristics during periods when it is 
contaminated by muscle activity. Therefore, we design classifiers 
in order to automatically discriminate between contaminated and 
non-contaminated EEG epochs using features based on the 
aforementioned quantities and examine their performance on 
simulated data and in scalp EEG recordings obtained from 
patients with epilepsy. 
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I.  INTRODUCTION  
The Electroencephalogram (EEG) is one of the most 

common recording techniques of brain activity. However, 
EEG does not only record  brain activity but is frequently 
contaminated by non-cerebral electrical activity such as line 
noise, cardiac signals, eye blinks and movements and muscle 
contraction due to biting, chewing and frowning. There are 
several filters and other methods, for removing line noise, 
cardiac signals and eye blinks and movements [1]. Muscle 
artifacts, also known as Electromyographic (EMG) artifacts, 
have presented a real challenge over the years, since they 
overlap with brain activity over a wide frequency range.  EMG 
contamination is particularly problematic in epilepsy where 
muscle artifacts are prevalent and also overlap the EEG signal 
and complicate its interpretation, often making this 
interpretation infeasible. Thus, EMG artifacts are a major 
obstacle in the characterization of electrophysiological 
properties [2]. Muscle artifact removal or reduction is an 
important problem that needs to be considered. Therefore, 
automatic detection of muscle activity and its subsequent 

removal is important, particularly for long duration EEG 
recordings. 

Currently, there are a number of algorithms to remove 
muscle artifacts from physiological signals, including 
independent analysis (ICA) and canonical correlation analysis 
(CCA) [3-4].  ICA [5], which separates the EEG into 
statistically independent components, has been applied, with 
good results, to ocular artifact removal [6-11]. However, in the 
case of muscle artifacts the removal was in many cases 
suboptimal [12]. 

 CCA [13] has been recently used as a tool for removing 
EMG-related contamination from the EEG [4, 12]. The CCA 
method, as well as ICA, belongs to a group of data-driven 
techniques for solving the Blind Source Separation (BSS) 
problem. According to the CCA method, the BSS problem is 
solved by forcing sources to be mutually uncorrelated and 
maximally autocorrelated. Moreover, the CCA method is 
computationally much less intensive than ICA [12]. Muscle 
artifacts are characterized by high amplitude, a broad 
frequency spectrum and low autocorrelation values 
(resembling random noise more than the brain-related EEG 
signals). Therefore, they tend to exhibit lower autocorrelation 
values compared to cerebral EEG signals [12].  

The EMG signal also exhibits topographical features that 
can be used in order to automatically detect muscle activity. 
The most common sources of EMG signal and therefore EEG 
muscle artifacts are the frontalis and temporalis muscles in 
the, frontal and central head regions [14]. The peak frequency 
of frontalis muscle contraction varies from 16 to 38 Hz, while 
for temporalis muscle contractions it ranges from 13 to 34 Hz 
[14]. Therefore, the spectral signal power fraction that resides 
in this range may be an important feature for detection of 
muscle activity in the EEG signal. In this paper, we present an 
automatic method for detection and removal of muscle 
artifacts from scalp EEG recordings in patients with epilepsy, 
by taking into account the above observations. Specifically, 
we exploit the fact that muscle artifacts exhibit lower 
autocorrelation values and higher relative power within the 
aforementioned range (13 to 38 Hz), compared to normal EEG 
signals. Therefore, by using these two quantities as features, 
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we design classifiers that automatically detect muscle activity 
and subsequently remove this signal from the EEG recordings. 

II. METHODS 

A. EEG Recordings and Preprocessing 
The proposed method was tested on 30min epochs recorded 

from three patients with epilepsy, extracted from longer 
duration EEG recordings. The experimental data were collected 
at the Neurology Ward of the Cyprus Institute for Neurology 
and Genetics. Twenty-one electrodes with two additional 
anterotemporal electrodes were placed according to the 10-20 
system. The data were recorded using an XLTEK video-EEG 
recording system with a sampling frequency of 200Hz. The 
data was band-pass filtered between 1 and 45Hz and the 
Temporal Decorrelation source SEParation (TDSEP) algorithm 
was subsequently applied to remove ocular artifacts using 
simultaneously recorded Electroocculogram (EOG) recordings 
(2 channels), as reference signals [3, 15]. 

TDSEP is based on the ‘simultaneous diagonalisation of 
several time-delayed correlation matrices’ [15]. Therefore 
because separation is based on the correlation of the sources, 
one of the advantages of TDSEP is that, it can separate signals 
whose amplitude distribution is Gaussian [3].  

 
For this work, the selected 30 minutes segments for each 

patient (in which a seizure is included), were then segmented 
into 5-second non-overlapping windows. Each window was 
marked as ‘noisy’ if muscle artifacts were identified within its 
duration otherwise was marked as ‘noise-free’ (Fig. 2). The 
muscle artifacts were identified and marked by expert 
neurophysiologists (coauthors ESP and SSP). The labeling is 
used in order to assess whether the algorithm is able to detect 
the ‘noisy and noise-free’ windows in data segments used for 
testing (cross validation); however, in the future our goal is to 
reduce or remove the need for expert marking by performing 
unsupervised clustering.  

B. Canonical Correlation Analysis 
CCA [13] provides a way of measuring the linear relationship 
between two multidimensional variables. This technique 
solves the BSS problem by forcing the sources to be 
maximally autocorrelated and mutually uncorrelated [12]. 
Consider two multi-dimensional random variables x and y. 
The input signal is x and let y be a temporally delayed version 
of the input x (i.e., y (t)= x (t – 1)). Consider the linear 
combination of the two variables, x = wx

T (x – x´) and  y = wy
T 

(y - y´), respectively. The correlation between x and y is given 
by:                      
 
                                                 (1)                                                                                                                         
 
 
 
where Cxx and Cyy are the within-set covariance matrices and 
Cxy is the between-sets covariance matrix. The largest 
canonical correlation is the maximum of � with respect to wx 
and wy. Optimization of (1) with respect to respect to wx and 

wy, i.e., results in the following two 
eigenvalue problems [12, 16]: 
 
                  (2) 

 
 
Solving (2) gives N solutions {�n, wxn, wyn} , n={1…N}. N 

is the minimum of the dimensionalities of x and y and �n are 
the canonical correlations. More details can be found in [16]. 
The N estimates of the sources are then given by 

. The EEG is reconstructed after the exclusion 
of components containing the artifacts, by projecting the 
selected components back onto the scalp. The enhanced EEG 
xclean(t) is then: 

             
                                           (3) 

 
with z(t) the sources obtained by CCA and Aclean the mixing 
matrix with the columns representing the artifacts sources, set 
to zero [12].       
  

C. Classifier design 
In this work we aim to detect and remove muscle activity 

from long duration EEG recordings by using the 
autocorrelation value at time lag one (we also examined the 
sum of the component autocorrelation values over the first 5-10 
lags but the results did not improve) and the relative power of 
each component in the range between 13-38 Hz as features. 
Brain activity corresponds to a structured signal having high 
autocorrelation values, in contrast to muscle activity which is 
less structured and exhibits properties that more closely 
resemble random (white) noise compared to normal EEG [12]. 
Furthermore, the relative power is fraction within the frequency 
range 13-38Hz is expected to be higher in muscle contaminated 
EEG signal and lower in artifact-free EEG signal [14]. 
Therefore, we computed the relative power (RP) as:  

                                                         
                                           (4) 

 

for each canonical component, where PMA is the component 
power within 13-38 Hz, calculated as the integral of the power 
spectral density (PSD) within this range and Ptotal is the total 
component power, calculated as the PSD integral between 1 
and 45 Hz. CCA was applied in 30min epochs containing 
muscle artifacts and artifact-free periods and 23 components 
were extracted. As described in Methods, 5-second non-
overlapping windows were labeled as ‘noisy’ or ‘noise-free’ by 
expert neurophysiologist within the corresponding window or 
‘noise-free’ otherwise (Fig. 3). For each 5s window, the 
autocorrelation at time lag one and the RP were obtained for all 
23 components. In total, we selected 46 features, of which half 
corresponded to autocorrelation values and half, corresponded 
to the RP of all 23 canonical components as identified by CCA. 
Therefore, a two-class classification problem was subsequently 
solved in order to correctly classify windows as ‘noisy’ or 
‘noise-free’. We also examined the spatial components maps 
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                                (a)                                                       (b) 

(c) 

(d) 

for each patient. Visual inspection revealed that the spatial map 
of the last 15 components was above possible sources of 
muscle activity (Fig. 4), which corroborates the results yielded 
by the classifier (see below). After feature extraction, we ended 
up with a high dimensional feature set (46 dimensions). Note 
that we decided to keep all components in order to remove any 
need for visual inspection of the spatial maps. Instead, we used 
a feature selection algorithm in order to identify the most 
important feature subset of the original features, which can be 
used for clustering, classification and artifact removal. To this 
end, several feature selection algorithms [17-18] were used and 
compared using a measure of the quality of the binary (two-
class) classification performance termed the Matthews 
correlation coefficient. MCC [19] is regarded as one of the 
most balanced measures which can be used even if the classes 
have considerably different sizes. MCC values range between 
�1 and +1. A value of +1 indicates perfect prediction, 0 
indicates random prediction and �1 indicates total 
disagreement between prediction and observation. Among the 
feature selection algorithms used, random forests yielded the 
largest MCC values; therefore, we present results based on 
these. 

Random Forests [18] are an ensemble learning method for 
classification. According to the method, many classification 
trees are grown, where by each tree depends on the values of 
an input vector sampled independently and with the same 
distribution for all trees in the forest. Each tree is generated 
using different bootstrap samples from the samples from the 
original data. About one third of the cases were left out of the 
bootstrap sample and used as cross-validation in order to 
compute the classification error. The selected features are 
placed in order of most important based on their importance 
score, which is computed by averaging the difference in the 
cross-validation error before and after the permutation over all 
trees.  Therefore, the important features are those that yield 
large values for these scores [18]. Therefore, we obtained a 
vector of forty-six features, of which the first one was the most 
important and the last one the least important. We repeated this 
method forty-six times and in each run we removed the last 
feature. The MCC was calculated in each run and was used to 
select the number of features (< 46) needed to achieve the best 
classification accuracy. 

D.  Simulation 

The aim of the simulation study was to evaluate the 
performance of the proposed method in order to detect and 
remove muscle artifacts. A simulation study with different 
signal to noise ratios in different channels and periods was 
implemented. Specifically an EEG epoch of 10min containing 
only brain activity was selected. This epoch was without 
muscle artifact according to the visual inspection by expert 
neurophysiologists. The simulated muscle activity was White 
Gaussian Noise (WGN) of different signal to noise ratios 
(SNR, -5, -10, -15, -20 dB) band-pass filtered in the frequency 
range 13-38Hz. The muscle activity was added in several 
randomly selected channels (1, 2, 14, 15 and 18) and only in 
within a 5min window in the epoch. The simulated epoch was  
segmented into 5-second non-overlapping windows of which 
half windows contained muscle activity and the rest did not. 

Figure 1. a) The autocorrelation of the Canonical Correlation Analysis (CCA) 
components, b) MCC values for different number of features used for 

classification, c) EEG signal (5s window) with muscle artifacts in channels 1, 
2, 14, 15 and 18. (b) EEG signal after removal of components (17, 18, 19, 20, 
21, 22 and 23). The EMG artifacts that are apparent in channels 1, 2, 14, 15 

and 18 are completely removed from the reconstructed EEG signal. 
 
We repeated the procedure described above in order to detect 
and exclude muscle artifacts from the EEG signal. 
 

III. RESULTS 

A.  Simulation 

Fig. 1a shows the autocorrelation of the CCA components and 
Fig. 1b shows the MCC values as a function of the selected 
features. The components accounting for the muscle artifact 
are present in the components with lower autocorrelation 
values. Fig. 1c and 1d show a ‘noisy’ 5s window before and 
after EEG reconstruction, respectively. The muscle artifacts 
that are apparent in channels 1 (SNR=-5dB), 2 (SNR=-5dB), 
14 (SNR=-10dB), 15 (SNR=-15dB) and 18 (SNR=-20dB) are 
completely removed from the reconstructed EEG signal. The 
‘noise-free’ windows are largely unaffected.  Table I provides 
the goodness of fit between channels of a ‘noisy’ and ‘noise-
free’ window before and after EEG reconstruction.  The cost 
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function to determine goodness of fit is one minus the 
Normalized Mean Square Error (NMSE) which varies 
between minus infinity (bad fit) to 1 (perfect fit). 

TABLE I.   

‘Noisy’ 
Window 
Channels  

NMSE ‘Noise-free’ 
Window 
Channels  

NMSE 
After EEG 

reconstruction 
After EEG 

reconstruction 
1 0.0840 1 0.8574 
2 0.0983 2 0.8152 

14 0.1119 14 0.9855 
15 0.0355 15 0.9200 
18 0.3140 18 0.9755 

 
In the ‘noisy’ window, the channels with muscle activity are 
affected significantly (except channel 18, Table 1) since the 
EMG artifacts are completely removed from the reconstructed 
EEG signal. . The noise added in channel 18 was with the 
largest SNR (-20dB), thus there is a possibility that was not 
completely removed after EEG reconstruction In contrast, in 
the ‘noise-free window the same channels are largely 
unaffected.  

B. Experimental data   

• Canonical Correlation Analysis 
Figs. 2a and 2b show the EEG signal of a ‘noisy’ and a ‘noise-
free’ 5s window from patient 1, identified and marked by 
expert neurophysiologists, respectively. Figs. 3a and 3b show 
the components of a ‘noisy’ and a ‘noise-free’ 5s window 
from patient 1, respectively. We observe that there are visible 
differences between in the components obtained from the two 
windows that could be used to detect and remove muscle 

  

Figure 2. (a) EEG signal of a ‘noisy’ 5s window (Patient 1). (b) EEG signal of 
a ‘noise- free’ 5s window (Patient 1). 

artifacts from the EEG signal. Also, the muscle activity in the 
‘noisy’ window does not seem to reside in the components 
with high autocorrelation values (e.g. components 1 and 2 in 
Fig. 2a), which are more likely related to normal brain 
activity. Rather, muscle activity is present in the CCA 
components exhibiting lower autocorrelation values (i.e. those 
that correspond to the lower traces of Fig. 1a). Fig. 4a presents 
the spatial map of the retro-projected components weights 
extracted from the 30 min epoch of patient 1. Fig 4b 
represents the autocorrelation of the CCA components. The 
selected features from the random forest algorithm (see below) 
were different for each patient; however, in all cases they 
corresponded to the last 15 canonical components 
(components 9 to 23 - Fig. 6a), as implied from the visually 
inspected spatial maps (e.g. Fig. 4). 

• Classifier 
Table II provides representative MCC values for all three 
patients after feature selection was performed. The results 
varied between the three patients. Patient 1 yielded the best 
MCC values. Figs. 4a and 4b shows the MCC values as a 
function of the selected features for patients 1 and 2, 
respectively. The selection of CCA components was done by 
keeping a trade-off between the MCC values (as high as 
possible) and the number of features (as low as possible). In 
order to remove the artifacts from the EEG signal we selected 
different number of CCA components to exclude for each 
patient. The selected components were excluded from the 30 
min epoch for each patient in order to keep continuity of the 
EEG signal. Figs. 5a show the reconstructed artifact free EEG 
signal of a representative 5s window marked as ‘noisy’, of 
patient 1. We observed that the EMG artifacts were removed or 
reduced from the reconstructed EEG signal. 

Figure 3. (a) CCA components of a ‘noisy’ 5s window (Patient 1). (b) CCA 
components of a ‘noise- free’ 5s window (Patient 1). 
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More specifically, the artifacts from the 2nd, 8th, 12th, 15th 19th 
and 23rd channels are completely removed, while the artifacts 
from the 15th and completely removed, while the artifacts from 
the 15th and 20th channels are reduced. Table III provides the 
goodness of fit between channels of a ‘noisy’ and ‘noise-free’ 
window (Fig. 1a, 5a) before and after EEG reconstruction, of 
patient 1.  In the ‘noisy’ window, the channels with muscle 
activity, are affected significantly (except channel 1, Table III) 
since the EMG artifacts are removed almost completely from 
the reconstructed EEG signal. In contrast, in the ‘noise-free 
window the same channels are largely unaffected. Figs. 5b 
show the EEG signal of a representative 5s window for patient 
1 marked as noise- free after EEG reconstruction, of patient 1.  
We observed that after exclusion of components from the 30 
min epoch only the ‘noisy’ window was affected (Fig. 6a) 
unlike the ‘noise-free’ window which was largely unaffected 
(Fig. 6b). 

Figure 4. (a) Spatial map of back-projected weights extracted from a 30min 
epoch of patient 1. (b) The autocorrelation of the Canonical Correlation 

Analysis (CCA) components of Patient 1. 

Figure 5. (a) MCC values for different number of features used for 
classification (Patient 1). (b) MCC values for different number of features used 

for classification (Patient 2). 

 

Figure 6. a) EEG signal after removal of components (9, 15, 18, 22 and 23). 
The EMG artifacts that are apparent in channels 2, 8, 11, 12, 15, 17, 19 and 23 

are completely removed from the reconstructed EEG signal. (b) EEG signal 
(5s window) with no muscle artifacts marked as ‘noise-free, after exclusion of 

the above components, of patient 1. The ‘noise-free’ window is largely 
unaffected. 

TABLE II.   

Number of features used 
for classification 

MCC 
Patient 1 Patient 2  Patient 3  

46 0,916 0.611 0.508 
40 0,917 0,612 0518 
30 0,923 0.584 0.523 
20 0.934 0.617 0.510 
10 0.922 0.618 0.502 
5 0.906 0,584 0,423 
1 0,556 0,312 0,419 

 

TABLE III.   

‘Noisy’ 
Window 
Channels 

NMSE ‘Noise-free’ 
Window 
Channels 

NMSE 
After EEG 

reconstruction 
After EEG 

reconstruction 
1 0.8349 1 0.9469 
2 0.1374 2 0.7797 
8 0.2423 8 0.8893 

12 0.1807 12 0.9604 
15 0.1023 15 0.8694 
19 0.0546 19 0.9775 
23 0.1604 23 0.8280 

 
This was observed in almost all cases. It is worth mentioning 
that despite the relatively low MCC classification scores for 
patients 2 and 3, the results of the reconstructed artifact-free 
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EEG signal were overall satisfactory for all subjects (e.g. 
Table III for patient 1). 
 

IV. DISCUSSION 
In this paper an automatic detection and removal of muscle 

artifacts from EEG recordings based on CCA was presented. 
The performance of the method was tested by using ‘noise-
free’ and ‘noisy’ windows marked by expert 
neurophysiologists, on both synthetic data and ictal EEG. The 
results from the simulation study were similar to that of ictal 
EEG. Most papers obtain CCA components by applying BSS-
CCA to 5-10s epochs [1, 9]. In this study we defined the CCA 
components from a long EEG epoch (30min) in order to be 
able to use these components in order to automatically classify 
shorter (5s) windows as ‘noisy’ or ‘noise-free’ (Figs. 1a and 
1b). The exclusion of the selected components from a 30min 
epoch for all patients affected only the ‘noisy’ windows (Fig. 
1a, 5a) and not the ‘noise-free’ windows (Fig. 1b, 5b).  The 
autocorrelation value at time lag one and the relative power of 
the CCA components in the frequency domain were found to 
be different between ‘noise-free’ and ‘noisy’ windows. In 
‘noisy’ windows the autocorrelation values of the components 
corresponding possibly to muscle artifacts, were lower than 
the ‘noise-free’ windows reflecting the fact that these artifacts 
exhibit more random characteristics. In contrast, the relative 
power in the selected range of frequencies (13-38 Hz) was 
higher in ‘noisy’ windows and lower in ‘noise-free’ windows. 
The selection of the CCA components for exclusion was based 
on a trade-off between the obtained MCC values and the 
number of features (Figs. 4a and 4b). The proposed method 
succeeded in removing muscle artifacts from brain signals in 
‘noisy’ windows for all patients. However, the classification 
performance varied substantially across patients. Patient 1 
yielded the best MCC values and lowest classification error 
compared to the other two patients. Although, for patients 2 
and 3 classification MCC values were relatively low, the 
results of the reconstructed artifact-free EEG signal were 
satisfactory for all patients. Furthermore, a possible 
explanation for these observations could be found in the origin 
of the muscle artifact signal. All the muscle artifacts in patient 
3 were marked after the seizure (after the first 15 min mark in 
a 30 min epoch). Thus, there is a possibility that in this case 
the muscle activity originated from different muscles than the 
frontalis and temporalis. Activation of other muscles may lead 
to an artifact signal with somewhat different spectra and 
frequency characteristics. Another possible explanation is the 
type of epilepsy. Patient 1 had generalized epilepsy, patient 2 
had intractable generalized epilepsy and patient 3 had simple 
focal onset epilepsy. Further investigation is needed in a larger 
set of patients with different types of epileptic seizures and 
muscle artifacts originating from different muscle groups. 
Also in the future, the method will be further validated on long 
duration EEG recordings with simultaneous EMG recordings 
used as reference.  
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