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Abstract—In this paper we present a novel method for 

describing the EEG as a sequence of topographies, based on the 
notion of microstates. We use Hidden Markov Models (HMM) to 
model the temporal evolution of the topography of the average 
Event Related Potential (ERP) and we calculate the Fisher score 
of the sequence by taking the gradient of the trained model 
parameters given the sequence. In this context, the average Event 
Related Potential (ERP) is described as a sequence of 
topographies and the Fisher score describes how this sequence 
deviates from the learned HMM. This alternative modeling of the 
ERP is used to fuse EEG information, as expressed by the 
temporal evolution of the topography, and Functional Magnetic 
Resonance Imaging (fMRI). We use Canonical Partial Least 
Squares (CPLS) for the fusion of the Fisher score with fMRI 
features. In order to test the effectiveness of this method, we 
compare the results of this methodology with the results of CPLS 
using the average ERP signal of a single channel. Using this 
methodology we are able to derive components that co-vary 
between EEG and fMRI and present significant differences 
between the two tasks. The results indicate that this descriptor 
effectively characterizes the temporal evolution of the ERP 
topography and can be used for fusing EEG and fMRI for the 
discrimination of the brain activity on different tasks. 

Keywords—EEG, fMRI, Partial Least Squares, Fisher score, 
pattern analysis 

I.  INTRODUCTION 
Combining information from EEG and fMRI has been a 

topic of increased interest recently. The main advantage of the 
EEG is its high temporal resolution, in the scale of 
milliseconds, while the main advantage of fMRI is the 
detection of functional activity with good spatial resolution [1], 
[2]. The advantages of each modality seem to complement each 
other, providing better insight in the neuronal activity of the 
brain. Although, fMRI provides an indirect measure of 
neuronal activity different studies have established that there 
exist common neural generators that explain both EEG 
activation patterns and the fMRI BOLD response [3]. The main 
goal of combining information from both modalities is to 
increase the spatial and the temporal localization of the 
underlying neuronal activity captured by each modality. 

Limitations of the recording technology did not allow for 
the simultaneous use of both modalities. Recent advancements 
in the EEG technology though, made possible the recording of 
EEG inside the fMRI scanner [4]. This technique renewed the 
interest in the combination of these two modalities and allowed 
the development of new techniques for their integration and 
fusion [2], [5], [6]. Decomposition techniques as Canonical 
correlation analysis [7] and partial Least Squares [8] have been 
used for the analysis of such datasets. Independent component 
analysis (ICA) was extended and modified in order to 
decompose simultaneous recorded datasets, resulting in the 
Joint ICA [6] and parallel ICA methods [9]. Simultaneous EEG 
and fMRI recordings allow exploring the direct correspondence 
between EEG and BOLD variability, either in task related or 
resting-state experiments. One major drawback of the 
concurrent recordings is the severe contamination of the EEG 
recordings with scanner artifacts that seriously degrade the 
signal quality.  

Initial attempts for EEG and fMRI integration, before these 
technology advancements, involved separate recordings of the 
same experiment in an effort to identify common sources of the 
explained brain functionality. The main drawback of separate 
multimodal recordings is that it is no longer possible to 
establish direct correspondence between fMRI and EEG trials 
and therefore it is not possible to directly exploit the response 
variability in the trial level. It is apparent that some 
transformation of the data in a common space and the 
extraction of representative statistics is needed for the effective 
analysis of such recordings. In the analysis of such datasets the 
main assumption is that the response to a given stimulus 
remains the same when recorded in different time points. 
Different methodologies have been applied for the analysis of 
separate recordings [10]–[13]. The main idea is to align the two 
modalities together and work on the estimated response elicited 
from the task presentation.  

On the other hand, the main advantage is that separate 
recordings do not suffer from signal quality degradation due to 
scanner interference. The majority of the studies of separate 
recordings have been focused in solutions in the source space, 
where source localization techniques are used in order to 
estimate the brain regions that are more probable to generate 
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the observed EEG. In this context fMRI is used for evaluation 
of the result or for restricting the search space of the 
localization algorithm. In order to study significant features of 
the EEG and fMRI, analysis of separate recordings exploits the 
common subject to subject variations in group analysis setting. 
Canonical Correlation analysis has been used for this purpose 
with significant results [7]. In this paper we present a novel 
feature for the characterization of the average ERP that can be 
used for the decoding EEG activities. We are using EEG and 
fMRI data that are separately recorded in order to identify 
common sources of co-variation between the datasets and use 
the common subspace in order to exploit information from both 
modalities. 

II. FEATURE EXTRACTION 

A. EEG as sequence of field topography maps 
Recently, there has been an increased interest in methods 

that exploit information carried by the topographic 
configuration of the electrical field in the scalp electrodes [14], 
[15]. Initially, this approach was introduced in [16], where it 
was first observed that the topography of the electrical field 
does not change randomly, but rather follows certain patterns, 
depending on the task at hand. It was though that these distinct 
topographies reflect the underlying sequence of brain activation 
and in a way represent a higher representation of the activation 
sequence of brain functions needed to complete the task.  

In order to recover the dominant topographies from the 
EEG signal different methodologies have been applied either in 
the average or the single trial Event Related Potential (ERP) 
[15], [17]. The main approach in this problem is to first define 
a measure of similarity between topographies and then apply a 
clustering algorithm in order to represent the set of 
topographies using the cluster centroids. In [18], we introduced 
a new measure of similarity based on the Local Global Graph 
(LG graph) which was applied for the segmentation of the 
average ERP. This measure treats the topographic map as an 
image and uses segmentation in order to extract the LG graph. 
The segmentation step provides the additional advantage that 
reduces the dimensionality of the problem and reduces the co-
linearity of the measurements of nearby channels, by grouping 
neighbor channels together. The similarity between 
topographies is measured in a hierarchical way, starting from 
the local similarity between nodes of the local graph and then 
taking under consideration the global relation of the nodes. 

1) Modelling using Hidden Markov Models  
Different algorithms have been applied for clustering the 

topographies. A modified k-means algorithm has been applied 
in [17]. Also hierarchical clustering algorithms and soft 
clustering algorithms as Gaussian mixture models [15], [18] 
have been successfully applied for the identification of 
dominant topographies. Some implementations incorporate 
temporal filtering of the results in order to remove isolated 
topographies in time and create a smooth temporal 
segmentation. In this study, we model the topographic 
sequence using Hidden Markov Models (HMM).  

HMMs are bivariate random processes consisting of a 
random variable modeling the observed processes and a hidden 
Markov chain which describes the transition between the 

different states. The probability of the current hidden state 
depends only on the previous state [19]. The distribution of the 
observations depends only on the current state and is 
independent of previous observations and states. More formally 
a HMM is defined as: 

� � ��� �� �	 (1)

�
�� � ����� � ���� � �� (2) 
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�

���
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where, � represents the initial probabilities of the states, the 
elements of A the transitions probabilities among the hidden 
states and B the distribution of the observations under the given 
state.  

In our case, we consider the sequence of the topographies 
as the observed variable and the different and the underlying 
hidden states as periods that present stationary distribution of 
topographies. The HMM seems to be a good fit in the 
microstate model, since it allows to model both the spatial and 
temporal relationships of our data. Initial results, in a work to 
appear, on single trial activations of healthy and Progressive 
Mild Cognitive Impairment subjects indicate that we were able 
to distinguish between the activations of the two groups using a 
generative classifier build from the HMMs. 

HMMs can be considered in the more general framework of 
Dynamic Bayesian Networks (DBN). HMMs are the simplest 
DBN models we can build. In [20], we extended the modeling 
of the topographic sequence using Dynamic Bayesian 
Networks. The trained networks were used for the binary 
classification between two tasks with good results and 
confirmed that the topographic sequence carries valuable 
information about the underlying brain processes 
complementary to the time-frequency analysis approach. The 
main problem with this approach is that using these generative 
models it is difficult to assess the impact of each parameter of 
the model and therefore it is difficult to associate the model 
parameters with other features and well known descriptors of 

 
Figure 1: Illustration of the Hidden Markov formulation for the modelling of 
the ERP topography. Hidden states of the HMM represent periods with quasi-
stationary distribution of topographies. 
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the brain response. In an effort to combine the strengths of 
generative models with the strengths of discriminative ones, we 
introduce the Fisher score for the analysis of EEG.  

The procedure for building the HMM is to apply a vector 
quantization step and then learn the model parameters on the 
encoded sequence. Specifically, we use the k-means algorithm 
on the multichannel vectors of the average ERP from all 
subjects in order to extract the observed symbols. The encoded 
sequence is used to learn the parameters of the discrete HMM 
using the Baum-Welch algorithm [19]. We apply this 
methodology on the wideband average ERP signal for 
extracting the topography codebook and learning the model 
parameters [20].  

B. Mapping to Fisher Score space 
The Fisher score space was introduced in [21] in an effort to 
bridge generative and discriminative models. The main 
motivation was to map variable length sequences into fixed 
length feature vectors, a problem often encountered in 
bioinformatics [21]. Fisher score uses the derivative of the 
parameters of the HMM given a certain sequence. Using the 
derivative of each parameter for a sequence we are able to 
build a feature vector of length equal to the number of 
parameters of the model. These vectors can be used to form the 
so-called Fisher kernel which can be used with kernel 
classifiers and methods [22] .The Fisher score has been very 
popular recently and have found many applications in 
classification of protein sequences, text, speech recognition and 
images for face recognition, shape/ texture recognition and 
activity recognition. 

The Fisher score maps a sequence to fixed length vector 
using the parameters of the generative model. The gradient of 
the parameters for a given sequence are used to accomplish 
this. In the case of HMMs, the gradient of the parameters of the 
trained HMM is computed for a sequence. The derived gradient 
describes how the parameters of the model must change in 
order to adapt to the new sequence. Therefore, the derived 
features can be used to evaluate how well the given sequence 
fits the model parameters and we can evaluate the deviation 
from a given parameter explicitly. The Fisher vector for each 
parameter is defined as: 

�� � � !"�#$� ���%�� (5)

For the case of modeling the EEG topography, the Fisher 
score of sequence provides useful insight for which parameter 
deviates most for a given sequence. The gradient of the 
parameters of the diagonal of the transition matrix � reflect the 
difference in the mean duration of a given state while the 
gradient of the off-diagonal entries of the matrix reflect the 
difference in the mean frequency of transition from a state to 
another. The same applies for the emission parameters with 
respect to the topography distribution. For the discrete case the 
gradient indicates a change in the distribution, where a certain 
representative topography may appear more often than 
expected in a given state. The transition parameters are easier 
to interpret in the continuous case though, were the emission 
distribution is modeled with a single or a mixture of Gaussian. 
In this paper we will present results for the discrete case, 

although the derivation for the continuous is straightforward. 
The gradient of the transition matrix can be calculated using 
the sufficient statistics of the HMM. The sufficient statistics of 
the HMM (the forward and backward probabilities) can be 
derived by the forward-backward algorithm [19]. 

III. METHODS 

A. Partial Least Squares for multimodal fusion 
Our goal is to extract information from the combination of 

the modalities. We assume that both modalities capture certain 
aspects of the brain response to the task, from different 
perspective. In the case of EEG, it captures the neuronal 
response attributed mainly to large pyramidal cells, while fMRI 
measures the change in the blood oxygenation in certain areas 
as a result of the stimulus.  

Different methods have been employed for fusing data 
from different modalities. Joint ICA and parallel ICA are two 
of the most popular algorithms used for this purpose. The main 
problem with these approaches is the strong assumption of 
independence imposed to the latent variables. CCA on the 
other hand has been used successfully for the fusion EEG and 
fMRI data [7]. CCA uncovers latent components that are 
maximally correlated between datasets. The main problem of 
the CCA method is that it maximizes the correlations between 
latent variables of the two sets and operates on the cross-
correlations matrix. Therefore, CCA is vulnerable to outliers 
and it is often the case the solution provided by CCA to fail to 
summarize the variance of the two datasets [26]. 

On the other hand Partial Least Squares (PLS) methods 
have been used successfully for the analysis of neuroimaging 
data [27] and have found applications in different problems 
[28]. Multiway PLS has been applied in the analysis of 
simultaneous recorded EEG and fMRI data in [8]. It seems 
though that PLS methods have been neglected partially due to 
the success of ICA methods in the analysis of EEG and fMRI. 
In general, there exist different formulations of the partial least 
Square method for the analysis of two sets of variables. The 
one known as Canonical Partial least squares (CPLS) tries to 
uncover the shared information between two sets of variables. 
It also known as Canonical Two Block Mode A PLS (PLS-
C2A) [29]. The main advantage of CPLS methods over CCA is 
that CPLS maximizes the covariance between the latent 
variables of the two datasets and therefore avoids the poor 
summary of variance problem of CCA, by directly maximizing 
the cross-covariance between the two sets. Although the 
formulation of CPLS looks similar to that of CCA, the 
computational details of CPLS make the solution numerically 
stable and the results are easier to interpret than CCA [29]. 

In general, CPLS tries to find two sets of latent variables 
(one for each set) that maximally co-vary. More formally we 
assume that we have two sets of variables�&� ', where the 
columns are the different variables and the rows are the paired 
samples. We also assume that variables of & and ' have zero 
mean and are scaled to unit variance. The main assumption is 
that the variables & are generated by the same number of latent 
variables as Y. Suppose that we have two paired sets of latent 
variables ()� (* for each set. We are interest to uncover these 
pairs of latent variables and CPLS does so by modeling the 
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cross-covariance by such pairs of latent variables. CPLS 
calculates pairs of latent variables defined as: 

+(,"� (-".� / 0 ��� 1 1 � 2	 (6)

so that variables +(,". and +(-". represent the most interesting 
subspaces (in the least square sense) of the cross-covariance 
matrix3. R is defined as: 

3 � &4' (7)

and we want to find linear combinations +(,". and +(-". such 
that: 

5#67(,8� (-89 � �:;<�5#6&=� '6�	 (8)

where =� 6 are the coefficients that maximize (3). It is well 
known that the solution of Eq.(3) can be obtained by solving 
the singular value decomposition of the cross-covariance 
matrix as: 

3 � >?@4 (9)

Therefore we can recover the linear combination weights for 
each set, which for set X are the singular vectors U and for the 
Y set the singular vectors V. The latent variables can now be 
calculated as: 

(, � &@ (10)

(- � '> (11)

Using this method, we are able to describe, using a linear 
combination, the features from X that maximally co-vary with 
features from Y. Working with the covariance matrix 
guarantees that the latent variables will sufficiently describe the 
cross-covariance structure of the data, in contrast to CCA that it 
may provide a poor summary of the datasets variability. 

B. Dimensionality reduction using PCA. 
The main problem in the analysis of fMRI data is the large 

number of features compared to the sample size. A single scan 
of the head usually involves hundreds of thousands of voxels. 
There has been applied several feature selection techniques in 
order to reduce the amount of features and allow us to work 
with a smaller subset of features. Choosing an appropriate 
region of interest and working with the corresponding voxels is 
one such technique. Another approach is to first solve the 
General Linear Model and based on that choose the voxels that 
differ significantly among tasks. This way we can select only 
the most informative features for our analysis. 

Despite these approaches that significantly reduce the 
number of features, most of the time it is beneficial to further 
reduce the dimensionality of the problem. Principal component 
analysis is a well known method that transforms our data to a 
lower dimensional space while retaining as much of the 
original variance as possible. PCA projects the data into the 
lower subspace as follows: 

'� � �&> (12)

where > is the matrix of the eigenvectors of the covariance 
matrix of &. By choosing the � eigenvectors that correspond to 
the largest eigenvalue we can map our original variable & to a 
lower space 'A.as follows: 

'A � �&>A (13)

PCA is well known technique and has been applied 
extensively for reducing the dimensionality of the initial 
problem. We apply PCA to the processed EEG and fMRI 
feature sets separately as a preprocessing step before the 
analysis of the cross-covariance of the two sets. 

IV. APPLICATION 
Our goal is to couple information from both modalities in 

an effort to generate new features that capture the variation 
between subjects. The main idea is that instead of producing 
features that summarize the variance of each set independently, 
we use PLS in order to describe the structure of the cross-
covariance matrix in an effort to capture the features that 
present task related behavior between the two modalities. 
Therefore, in contrast with PCA which operates in the 
covariance matrix of each set to reduce the dimensions of the 
problem, we are taking into consideration the modulation of 
features across modalities in order to recover task related 
features. 

A. Data Description 
The data come from the study [30] and have been made 

publicly available from the authors. We used the EEG and the 
fMRI part of the dataset, only. In this dataset 16 subjects were 
asked to perform a visual task where faces of famous persons, 
unfamiliar faces and scrambled faces where presented to them. 
The complete description of the dataset can be found in [30]. 
The EEG data were recorded in separate sessions several days 
apart from the fMRI session. 

There were 300 faces and 150 scrambled faces in total. The 
scrambled faces were created by taking the Fourier transform 
of a group of 150 images of faces. The phases of the 
transformed images were permuted and then inverse 
transformed in the original space. Finally, the new scrambled 
image was masked using the outline of the original face. For 
the MEG/EEG data each subject completed 900 trials over six 
sessions, while for the fMRI each subject completed 900 trials 
over 9 sessions [30].  

B. EEG preprocessing and Fisher score calculation 
The data were examined for artifacts and Independent 

component analysis was used in order to remove eye-blink 
artifacts [31]. Trials that were heavily contaminated were 
excluded from further analysis. The data were band-pass 
filtered in the range 0.5-31Hz using a linear Finite Impulse 
response filter and the average over all trials per task was 
calculated for all subjects resulting in 2 average ERPs for each 
subject. 

Using the average ERP we extracted the discrete HMM as 
described in section II. We evaluated different number of states 
and number of symbols for the HMM. The number of symbols 
were chosen so that the reconstruction error of each sequence 
to be less than 30%. The resulting codebook consisted of 15 
topographies. We used 6 hidden states for the HMM and these 
were selected by testing the accuracy performance of a simple 
maximum likelihood classifier.  
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We followed a simple strategy for calculating the Fisher 
score for the average sequences. We trained the HMM, on the 
scrambled faces trials and then the Fisher score of all ERPs 
was calculated based on this HMM. The Fisher score of each 
ERP reflects the deviation of the sequence from the HMM 
parameters learned using the scrambled faces and therefore we 
expect smaller deviations for ERPs of the same class and larger 
for the other classes. We treat famous and unfamiliar faces the 
same and the gradient of the parameters reflect the change in 
the model depending on the stimulus.  

C. fMRI preprocessing 
The fMRI volumes consisted of 33 T2-weighted transverse 

echoplanar images. Each session consisted of 210 volumes 
with a repetition time (TR) of 2000ms. FMRI data were 
preprocessed as in [30]. We used SPM5 [32] in order to 
register the slices of each subject together. A T1-weighted 
image of each subject was segmented to gray matter, white 
matter and Cerebrospinal fluid and the segments were 
registered to the corresponding segments of an MNI template 
in Tailarach space [32]. The slices of each run were first co-
registered and then time corrected. The co-registered volumes 
were then registered and normalized to the processed T1 
volume of the corresponding subject.  

D. FeatureExtraction 
Since we want to take advantage of information from both 

EEG and fMRI using CPLS, we have to work with paired 
datasets. Trials from EEG and fMRI were recorded at different 
times and therefore we cannot have a direct correspondence 
between trials of the same subject. For this reason we worked 
across subjects. For the EEG we built two datasets for 
evaluation of our approach. In one, we used the Fisher score 
vector and in the other the average ERP on a single channel as 
feature. A channel located in the occipital area was selected 
that presents strong ERP peaks after the stimulus. The ERP 
peaks that we anticipate to observe from this type of stimulus, 

is a positive peak at 100ms (P100) and a negative peak at 
170ms (N170) after the stimulus.  

For the fMRI data we are going to work with the beta maps 
of each subject. We model the HRF response of each subject 
using a canonical HRF, build from two gamma functions [32]. 
Using the General Linear model we model the activity of each 
voxel as: 

'� � &B� C D (14)

where Y is the activity of a given voxel and X is the design 
matrix of the experiment. We estimate, for each voxel the beta 
value and use the corresponding maps to build the fMRI 
dataset. The final fMRI dataset consists of sixteen subjects and 
3 parametric maps per subject, one for each task.  

V. RESULTS 

A. Evaluation using the average ERP and fMRI. 
We performed CPLS using the features from EEG and 

fMRI. We constructed two EEG datasets. The first consists of 
the average of each subject. In this case the samples of the 
average ERP are the features that we are going to use. The 
dimensionality of the fMRI data was reduced before applying 
CPLS. Initially, we selected voxels that differ significantly 
between tasks, as indicated by an ANOVA test. We set a 
threshold of 0.05, uncorrected. This liberal threshold was used 
as an initial data reduction scheme. Our intent is to keep the 
most informative voxels and reduce the dimensionality rather 
than to uncover the specific task related voxels. We want to 
keep enough variability in the data for CPLS to work with. The 
resulting dataset was further reduced using principal 
component analysis.  

We applied CPLS in the set consisting of the average ERP 
dataset and the reduced fMRI. The results can be seen in Figure 
2. An EEG component that corresponds in the N170 peak is 
presented along with the corresponding fMRI component. We 
can see that the EEG component characterizes well the activity 

  
                 A                                                     B                                              C                                             D   

Figure 2: CPLS Componenst related to the N170 peak and the corresponding fMRI activation. Left Results from the application of CPLS in the average ERP and 
fMRI. A component that captures the acivity around the N170 peak is presented (A) and the corresponding component for the fMRI (B). Right, Results from the 
application of CPLS in the EEG Fisher score dataset and FMRI. The most important states recovered from the components that present significantly different 
activation between the tasks are presented for EEG (C) and fMRI (D). Figure 2C top, the mean topographies for the given periods are presented for comparison. At 
the bottom the estimated topographies from the hidden states with the highest PLS loadings are presented, for the corresponding periods. Comparison:We can see 
that we have common activations for the fMRI activity between the components of CPLS applied in the two datasets. Relevant activity to the N170 is marked with 
colored rectangles. Yellow rectange marks the area in the Occipital gyrus, while green and blue mark the middle temporal gyrus(blue rectangle) and the precentral 
gyrus(green rectangle). For the average ERP case with red is marked the lateral superior Occipital cortex. For the Fisher score case red and magenta mark the inferior 
and superior frontal gyrus, respectivelly. 
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around the N170 peak. On the other hand, the fMRI CPLS 
component reveals areas that co-vary with the EEG component 
and are in agreement with other studies regarding the areas 
involved in the generation of N170 [33]. Significant areas of 
activations were calculated by thresholding the Z transformed 
loadings of the fMRI component. We can observe that the 
N170 component is mostly associated with activations in the 
occipital and lingual gyrus (marked with yellow rectangle), the 
left superior Occipital cortex (red rectangle), the middle 
temporal gyrus (blue rectangle) and the precentral gyrus (green 
rectangle). These regions match the ones reported by other 
studies [33] and confirm that results of the decomposition. 
These initial results indicate that CPLS is able uncover 
meaningful components that co-vary between the two datasets.  

B. Evaluation using the Fisher score and fMRI 
In this case we used the EEG dataset containing the features 

derived by taking the gradient of the HMM parameters. The 
parameters of interest are the transitions between the states of 
the HMM model. In order to localize the activity in time, we 
use three windows around the peaks of interest. The first period 
starts right after the stimulus onset and includes the P100 peak. 
The second period includes the negative peak N170 and the last 
period covers the late period of the trial up to 650ms after the 
stimulus onset, as can be seen in Figure 2. 

We applied CPLS in the two datasets and the results can be 
observed in Figure 2(C-D). In this case, we searched for 
components that present significant differences among the 
stimuli. We used Student’s t-test to search for components that 
displayed significant difference between the two tasks. We 
used the loadings of these components to map the contribution 
of the components back to the original variables. The loadings 
were reformatted into the corresponding transition matrices for 
each window and the transition weights were Z normalized. In 
this case, we found components whose loadings significantly 
differ between tasks, in contrast to the previous one (using the 
average ERP). In figure 2 right, we present the pair of 
components that present the greatest difference between tasks. 

For each time period, we identified the most important 
entry in the transition matrix of the components. For all the 
windows, the features used represent the transition to the same 
state and therefore can be translated as differences in the mean 
duration of the state. Since we are working with the average 
signal, we don’t expect significant differences in the rate of 
transition from one state to another. The transitions in the same 
state can be explained as the mean duration of the state at the 
given interval. In figure 2 right the mean topographies, as 
calculated by the emission probabilities of the identified state, 
are presented for the P100 and N170 periods along with the 
corresponding fMRI component. 

In this case the results present similarities with the ones for 
the component for N170 of the average set. We can observe 
significant fMRI activations located in the occipital lobe 
(yellow) and the occipital fusiform gyri (yellow) and the post 
central gyrus (green). In this case, the components project 
significantly to all periods and therefore is expected to have 
more active regions than in the case of the average ERP. The 
additional activations are located mainly in the inferior and 

superior frontal gyri (red) and are related to ERP components 
that appear later in time (as the P600) [33].  

VI. DISCUSSION 
In this study, we introduced a novel feature based on the 

concept of the Fisher score. We used this novel modeling of the 
EEG to fuse together information from EEG and fMRI. We use 
HMMs in order to characterize the topography and the 
temporal evolution of the average ERP. Based on the trained 
HMM, for each sequence we calculate the Fisher of each 
parameter for that sequence. This approach builds on our 
previous work used to characterize the EEG topography by 
operating on the HMM parameters. The transformation to the 
Fisher score space, allows bridging the descriptive power of 
generative models with the efficiency of discriminative 
approaches and provides a novel framework for characterizing 
the EEG activity. The derived score describes how the 
parameters of the model must change in order to adapt to the 
new sequence. Using the derived feature vectors we can use 
standard discriminative techniques for the decoding of the 
EEG. 

We apply this technique in a multimodal dataset of 16 
subjects performing a visual task and use the derived results for 
fusing EEG information with fMRI using CPLS. We evaluated 
the effectiveness of CPLS in describing the cross-covariance 
between the EEG and fMRI datasets, by applying it of the 
average ERP and the fMRI features. CPLS successfully 
recovered the prominent peaks of the average ERP in different 
components and the corresponding fMRI component localizes 
the activation in regions that are related to the corresponding 
peak, as expected from the literature.  

Using the same technique between the Fisher score features 
of the EEG and the fMRI, the results show that using CPLS it 
is possible to relate the hidden states described by the HMM 
model to fMRI activations. Using the Fisher kernel we were 
able to recover components that are significantly different 
between states. These results indicate that the Fisher score can 
be used for the decoding the EEG activation patterns of 
different tasks. On top of that, we demonstrated that CPLS can 
be used to combine and fuse information between modalities 
and its results can be used for multimodal classification and 
decoding. In future work, we intend to explore the use of the 
Fisher score and CPLS for the discrimination between tasks in 
a multimodal multivariate setting. 
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