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Abstract—One of the more prevalent problems when working with
bioinformatics datasets is class imbalance, when there are more
instances in one class compared to the other class(es). This problem
is made worse because frequently, the class of interest is also the
minority class. A possible solution is data sampling, a powerful tool
for combating class imbalance by adding or removing instances to make
the dataset more balanced. In addition to the choice of including data
sampling, one of the most important decisions when applying data
sampling is what the final class ratio should be. Commonly, the final
class ratio when data sampling is applied is 50:50, however it is an
open question whether other ratios are more appropriate for certain
imbalanced datasets (all datasets in this paper have 25.16% minority
instances or less) where a 50:50 ratio requires extreme modification
to the dataset. In this work we compare six different data sampling
approaches (feature selection with the pairwise combinations of three
data sampling techniques and two final class ratios) with feature
selection without data sampling with the goal of determining if the
inclusion of data sampling is beneficial and if so, what should be the
final class ratio. In order to test the six data sampling approaches
and feature selection alone thoroughly, we utilize seven imbalanced
and high-dimensional datasets, three feature selection techniques, and
six classifiers. Our results show that for a majority of scenarios,
random undersampling along with either 35:65 or 50:50 is the best
data sampling approach. Statistical analysis shows that there is no
significant difference between the data sampling approaches. However,
despite this, we still recommend using random undersampling along
with 35:65 as the final class ratio. This is because of the frequency
of both random undersampling and 35:65 being the most frequent
top performing data sampling technique and class ratio respectively.
Additionally, 35:65 will have fewer negative impacts than 50:50 (less
data loss or overfitting, which makes it a better choice if all other
factors are equal) and random undersampling is more computationally
efficient than any other form of sampling, including “no sampling”
(both by not requiring any internal calculations and by producing a
reduced, easier-to-work-with dataset). To our knowledge, this is the
most comprehensive work which focuses on the choice of the inclusion
and implementation of data sampling with different final class ratios
on bioinformatics datasets which exhibit such large levels of class
imbalance.

Keywords-Class Imbalance; Class Ratio; Data Sampling; DNA Mi-
croarray;

I. INTRODUCTION

Class imbalance (when one class has more instances than the

other class(es)) is a frequently encountered problem in bioinfor-

matics which can lead to increased bias toward the majority class

and an increased number of false classifications. Additionally, the

minority class is frequently the class of interest, making these

classification errors even more damaging. However, there is a

powerful set of techniques designed to combat class imbalance:

data sampling.

Data sampling uses the addition or removal of instances to

transform the imbalanced dataset into a more balanced dataset.

There are a number of different forms of data sampling that can

be utilized including: randomly adding duplicates from the minority

class, randomly removing instances from the majority class, or

synthetically creating instances for the minority class based on the

original ones.

In addition to the choice of technique, one of the most important

decisions to make when applying data sampling is what the final

class ratio should be. Commonly, researchers decide to make the

sampled dataset to be perfectly balanced between the two classes

(class ratio 50:50). However, for some cases of extreme class

imbalance, making the classes perfectly balanced may not be

appropriate: for undersampling approaches, this may lead to an

excessive number of majority-class instances being removed from

the dataset, while for oversampling approaches, this can create

repetition within the minority class that will lead to overfitting.

In this work, we seek to determine if the inclusion of data

sampling is recommended and if so, whether less-aggressive class

ratios have the potential to be just as effective as the 50:50

ratio on imbalanced bioinformatics datasets. To accomplish this,

we compare feature selection without data sampling with six

different data sampling approaches: feature selection with one

of six combinations of three data sampling techniques (random

undersampling (RUS), random oversampling (ROS), and the Syn-

thetic Minority Oversampling TEchnique (SMOTE) [1]) and two

final class ratios (50:50 and 35:65). The 35:65 ratio was chosen

because this study seeks to explore the potential of less-aggressive

ratios in the bioinformatics application domain, not to quantify the

precise ratio which will maximize performance and because 35:65

is an appropriate class ratio [12], [17]. These six data sampling

approaches and feature selection alone were tested on a series

of seven bioinformatics datasets which exhibit extreme degrees of

class imbalance. In addition to the datasets and the data sampling

techniques, we used a series of three feature selection techniques

and six classifiers.

Our results show that in a majority of scenarios, RUS with 50:50

and RUS with 35:65 are the two top performing data sampling

approaches. Additionally, we found that for a large majority of

scenarios, an approach with data sampling outperforms feature

selection alone, and at no point does feature selection alone become

the top performing choice for any combination of feature ranker

and classifier. Statistical analysis shows that there is no significant

differences between the six data sampling approaches and feature

selection alone. However, all other things being equal, 35:65 would

be preferred over 50:50 due to its reduction of data loss (for

random undersampling) or overfitting (for random oversampling

and SMOTE); 50:50 has no inherent benefits for highly-imbalanced

datasets (those which are naturally more imbalanced than 35:65

to start with). Among the three sampling techniques and the “no

sampling” baseline approach, RUS would also be preferred because

by reducing the dataset size, it reduces computational complexity of
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modeling. Because of these facts, and because 35:65 is frequently

the top performing class ratio, we recommend that RUS along with

35:65 be used for the data sampling approach on highly-imbalanced

datasets. To our knowledge, this is the most comprehensive work

regarding the choice of the inclusion of data sampling and the

class ratio choice on severely imbalanced datasets in the domain

of bioinformatics.

The remainder of this paper is organized as follows. Section II

contains some related works to our topic. Section III outlines the

case study used in this work. Section IV contains the results of

our experiments. Lastly, Section V presents our conclusions and

possible avenues for future work.

II. RELATED WORKS

Class imbalance is a frequent problem within bioinformatics

datasets [3]. An example of class imbalance is demonstrated by

Van Hulse et al. [22] who compared the correlations among nine

rankers on five imbalanced datasets and a number of data sam-

pling approaches (algorithms to improve the balance of datasets).

Ramaswamy et al. [20] performed feature selection on a dataset

where only 16% of the instances are in the class of interest. The

presence of class imbalance has the potential to affect the classifi-

cation performance of classifiers applied toward these imbalanced

datasets. To ensure that we take these effects into account, the

datasets in the present work all clearly exhibit class imbalance.

A possible reason why class imbalance tends to affect classifi-

cation performance may be due to the fact that many classification

algorithms assume that the classes will have an equal number of

instances in the dataset [14]. This assumption can lead to some

serious problems including increased bias against the minority class

(which is frequently the class of interest) and an increased number

of misclassifications [2]. One recommendation for combating some

of these issues is applying data sampling methods. These work

by either adding instances to the minority class (oversampling) or

removing instances from the majority class (undersampling).

In 2005, Al-Shahib et al. [2] performed a study which utilized

data sampling with multiple class ratios. The goal of the work was

to see if the addition of a data sampling technique could improve

the classification performance of protein function prediction. Their

dataset consisted of 1,151 proteins (instances) from thirteen dif-

ferent functional groups with each of the protein samples being

represented by a feature space of 433 features. In terms of data

sampling they used random undersampling along with five different

levels of undersampling ranging from no data sampling being

applied to having the two classes become perfectly balanced. These

classification models were evaluated using the Area Under the ROC

Curve metric (AUC). Their findings were that the addition of the

data sampling technique did improve classification performance, so

as long as the data sampling was used to perfectly balance the two

classes (a final class ratio of 50:50).

However, there are a number of differences between the present

work and Al-Shahib et al. The first is that Al-Shahib et al. only

uses a single dataset (even though it uses thirteen classification

schemas), which raises the question of how applicable their results

are to other datasets. The present work uses a collection of seven

unique bioinformatics datasets from a variety of different genetics,

medical, and biomedical studies. Next, all of the datasets in our

work have many more features than the dataset in Al-Shahib et al.

(between 12,066 and 54,614 features, compared to the 433 features

in Al-Shahib et al.). Another major difference is that Al-Shahib

et al. only uses a single data sampling technique (random under-

sampling) whereas this work uses three: random undersampling,

random oversampling, and SMOTE. Additionally, only a single

wrapper-based feature selection technique was used in Al-Shahib

et al., while three filter-based feature selection techniques were

used in this work. It should be noted that wrapper approaches

such as those used by Al-Shahib et al. can become computationally

infeasible on very high-dimensional datasets such as those used in

the present work. Lastly, they introduce variability by bootstrapping

(sampling with replacement) the test dataset twenty times which

does not test the variability of the process of building the inductive

model. The present work utilizes four runs of five-fold cross

validation for each dataset and the entire model building process,

including feature selection and data sampling, was repeated for

every training dataset created.

In 2012, Blagus et al. [5] performed a study which included uti-

lizing data sampling techniques on high dimensional bioinformatics

datasets. In this work they used two sampling approaches: random

undersampling and SMOTE. In their work they used a series of

three breast cancer datasets each with two binary classification

schemas (two distinct binary-class attributes) for a total of six

datasets. The balance levels of the datasets ranged from 14%

to 45%. The t-statistic was used for feature selection, with the

features ranked based on their values and the top 40 features

used for classification. The results of the work were that only

the k-NN classifier seemed to benefit significantly from SMOTE,

and this benefit was larger as the number of neighbors increased.

However, for most of the other classifiers, it seemed that random

undersampling was more useful than SMOTE.

There are a number of differences between the Blagus et al.

work and the present work. The most important factor is that

unlike Blagus et al., the present work only uses datasets which

clearly exhibit an inherent class imbalance. Another difference is

that while both papers apply cross-validation, Blagus et al. applies

leave one out cross validation (the test dataset consists of only a

single instance), whereas the present work uses four runs of five-

fold cross validation. Also, Blagus et al. performed feature selection

outside of the cross-validation process and then performed either

no data sampling technique, SMOTE, or random undersampling.

If a data sampling technique was applied, they created 50 new

balanced datasets to train the models on. Additionally, this work

uses an additional data sampling techniques when compared to the

Blagus et al. work: random oversampling. Another major difference

is that the Blagus et al. work only use a single filter-based feature

selection technique, while this work uses a series of three filter-

based feature selection techniques. Also, this work uses a series

of seven different bioinformatics datasets (two of which were in

Blagus et al.), compared to the three (each with two classification

schemas) that Blagus et al. uses. Lastly, Blagus et al. only uses the

balance level 50:50 in their microarray experiments. As a result,

this work is a more comprehensive analysis for the topic of data

sampling and class ratio selection.
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III. CASE STUDY

A. Data Sampling approaches

In this work, we use three different data sampling techniques

which are applied after feature selection occurs: random undersam-

pling, random oversampling, and Synthetic Minority Oversampling

TEchnique or SMOTE [1], [11]. Random undersampling (RUS)

seeks to create balance between the two classes by reducing the size

of the majority class. This is accomplished by randomly removing

instances from the majority class until the desired class ratio has

been achieved. Alternatively, random oversampling (ROS) seeks to

improve the class balance by increasing the size of the minority

class. The increase is performed through randomly duplicating

instances from the minority class until the desired class ratio is

achieved.

SMOTE is another form of oversampling which seeks to improve

the balance between the two classes through the increasing the

size of the minority class. However, unlike random oversampling,

SMOTE does not duplicate instances. Instead SMOTE creates

new minority instances using the original ones as a basis. It

starts with an instance from the minority class and looks at its

nearest neighbor. Once the nearest neighbor has been identified, the

differences between the two instances in terms of each feature is

calculated. Finally a new instance is created by adding the product

of the differences calculated and a random number between 0 and

1 to the original instance.

However, all three techniques have their downsides. Since ran-

dom undersampling removes instances from the majority class, it

is removing data from consideration for the model. Alternatively,

random oversampling and to a lesser extent SMOTE run the risk

of overfitting because of the addition of the duplicated or synthetic

minority instances. As a result we decided to use two different

final class ratios: 50:50 and 35:65. The two class ratios were

chosen because 50:50 is the most common final class ratio for

data sampling and previous research has shown that 35:65 is an

appropriate final class ratio [12], [17].

In addition to the results with the inclusion of data sampling,

we also present the results of feature selection without data

sampling to determine if the inclusion of data sampling has some

benefits. The goal of this paper was not to identify the absolute

best solution: rather, we wanted to see if the inclusion of data

sampling is beneficial and if we could achieve similar or even better

classification performance while applying smaller changes to the

data, which would enable us to create a model with less data loss

or overfitting. In addition, the scope of this work (with the large

collection of datasets, feature selection techniques, classification

learners, and sampling techniques) did not permit us to consider a

large collection of class ratios: the two we chose were sufficient to

demonstrate the effectiveness of a less-aggressive class ratio.

B. Feature Selection Techniques

For all data sampling approaches, first step is applying fea-

ture selection techniques to reduce the feature set to a more

manageable size. In this work we use three filter-based feature

selection techniques: Information Gain (IG), Signal-to-Noise S2N,

and Area under the ROC Curve (ROC). All three are filter-based

feature selection techniques which have exhibited varying levels

of stability and average to good classification performance. We

feel this consideration is important as feature selection stability

can affect the performance of the overall inductive model building

process. According to previous research [9] we see that IG has

average to below average stability; S2N is above average in terms

of stability, and ROC is one of the most stable feature selection

techniques. When using feature selection a final feature subset size

must be chosen. In our work we use 25 features which, based on

previous research, is a reasonable number of features [15].

Information Gain (IG) [13] is one of the simplest and fastest

feature ranking techniques, and is thus popular in bioinformatics

where high dimensionality makes some of the more complex

techniques infeasible. IG determines the significance of a feature

based on the amount by which the entropy of the class decreases

when considering that feature. S2N is a measure of how well

a feature separate the two classes. The ratio is defined as the

difference between the mean value of that feature for the positive

class instances and the mean value of that feature for the negative

class instances over the difference between the standard deviation

of that feature for the positive class and the standard deviation of

that feature for the negative class. The larger the S2N ratio, the

more relevant a feature is to the dataset [15].

ROC is Threshold-Based Feature Selection (TBFS) technique

used in conjunction with the Area Under the Receiver Operating

Characteristic (ROC) Curve metric. TBFS treats feature values as

ersatz posterior probabilities and classifies instances based on these

probabilities, allowing us to use performance metrics as filter-based

feature selection techniques. The TBFS technique which uses ROC

as its performance metric has been shown to be a strong ranker. For

details on TBFS and the ROC metric please refer to Abu Shanab

et al. [1].

C. Classifiers

Six classifiers were considered in this work: 5-Nearest Neighbors

(5-NN), Logistic Regression (LR), Multilayer Perceptron (MLP),

Naı̈ve Bayes (NB), Random Forest with 100 trees (RF100), and

Support Vector Machines (SVM). All were implemented within

the WEKA data mining toolkit [24], with default parameters unless

otherwise noted. We utilized the same parameter values for all

models built in this work because the focus of this work was on

comparing two different class ratios for sampling, not on tweaking

the classification models, and using consistent parameters allowed

us to make meaningful comparisons. Note that any changes to de-

fault parameter values were applied when experimentation showed

an overall improvement of the classification performance [23]. Due

to space limitations, all of the learners are described very briefly;

please consult Witten et al. [24] for further information.

5-Nearest Neighbors is an instance-based classifier which, in

order to classify a new instance, finds the five closest neighbors

within the training set and takes a weighted vote (weighted

by 1/Distance) of their class values. Logistic Regression builds

a simple logistic regression model based on the training data.

Multilayer Perceptron is a feed-forward artificial neural network

learner wherein each node takes its value by finding the sigmoid

of the weighted sum of its inputs; our implementation used a

single hidden layer with three nodes, and held back 10% of the

training data for validating when to stop the backpropagation-

based training. Naive Bayes uses Bayes’ Theorem to determine the

posterior probability of membership in a given class based on the
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values of the various features, assuming that all of the features are

independent of one another. RF100 is an ensemble classifier which

builds a set of unpruned decision tree then uses majority voting

on the resulting trees to perform prediction. Previous research [16]

shows that the optimum number of trees is 100, so that is the

number used in this study. Support Vector Machines attempts to

find the hyperplane which best separates the two classes in feature-

space; our version has its complexity constant set to 5.0 and its

buildLogisticModels parameter set to true.

D. Cross Validation

Cross-validation [22] refers to a technique used to allow for the

training and testing of inductive models without resorting to using

the same dataset. The process of cross-validation is that the dataset

will be split as evenly as possible into a predetermined number

of subsets or folds. The models (including feature ranking) are

then built on the first n − 1 folds where n is the total number of

folds. The model is then tested on the final fold and the results

are collected. The final step is to change which fold is the testing

fold and repeat the training and testing process until each fold

has been the test fold exactly once. In this paper we use five-fold

cross-validation. Additionally, we perform four runs of the five-

fold cross validation so as to reduce any bias due to a lucky or

unlucky split. It should be noted that both the feature selection and

data sampling processes was performed inside the cross-validation

step: that is, for each run and each “training set” within the cross-

validation procedure, feature selection for subset size twenty-five

was performed followed by data sampling to achieve a “training

set” whose class ratio is either 35:65 or 50:50. The inductive

models are trained using the reduced feature set and the sampled

“training set”.

E. Performance Metric

All classification performance is evaluated using the Area Under

the Receiver Operating Characteristic Curve (AUC) [10]. AUC

seeks to find how the model balances false positives with false

negatives at different decision thresholds. This is achieved by plot-

ting the true positive rate (number of true positives/total number of

positives) versus false positive rate (number of false positives/total

number of negatives) over all of the decision thresholds. The area

under the curve is used to describe the quality of the model. This

metric was chosen because of the imbalanced nature of the datasets

used in this study. It should be noted that this is distinct from the

feature selection technique ROC discussed above.

F. Datasets

Table I contains the list of datasets used in our experiment

along with their characteristics. The datasets are all DNA mi-

croarray datasets acquired from a number of different real world

bioinformatics, genetics, and medical projects. As some of the

gene selection techniques used in this paper require that there

be only two classes, we can only use datasets with two classes

(in particular, either cancerous/noncancerous or relapse/no relapse

following cancer treatment). The datasets in Table I show a large

variety of different characteristics such as number of total instances

(samples or patients) and number of features. We chose these

datasets because they are imbalanced enough to be able to utilize

the 35:65 class ratio (the largest minority class distribution is

25.16% which is well below the 35% from the final class ratio).

The last column, Average AUC refers to the classification per-

formance on these datasets when building models without feature

selection or data sampling. The values were calculated using a

set of six different classification models: 5-NN, MLP, NB, SVM,

and two versions of a C4.5 decision tree (C4.5 D and C4.5 N).

Descriptions of all of the learners are found in Section III-C with

the exception of C4.5 D and C4.5 N. C4.5 D is the C4.5 decision

tree classifier (implemented as J48 within WEKA) with the default

parameter values. C4.5 N is the same classifier but with Laplace

smoothing enabled and pruning disabled. Both are available using

the WEKA Data Mining toolkit [24]. These results are used only to

determine the difficulty of the datasets and have no further bearing

on the rest of the experiment. The values show that while the

datasets represent different levels of difficulty they are not trivial

and therefore are excellent for comparing different techniques [7].

IV. RESULTS

In this study, we compare feature selection with no data sampling

with six different data sampling approaches using a series of seven

imbalanced, high-dimensional bioinformatics datasets, three feature

selection techniques, and six classifiers. Table II contains the

results of our experiment. Each number is the average AUC value

across all of the datasets where the data sampling approach, class

ratio when applicable, feature selection technique, and classifier

are kept static. In terms of the results using data sampling, for

every combination of data sampling technique, feature selection

technique, and classifier the top performer between 50:50 and

35:65 is in boldface. Additionally, the top performer across all

data sampling approaches and class ratios for each classifier will

be underlined.

We begin with our comparison of feature selection with data

sampling compared to feature selection without data sampling. The

results show that for 85 of the 108 scenarios of data sampling with

feature selection being compared to just feature selection, that the

data sampling with feature selection shows better performance than

just feature selection alone. Additionally, when we look at the top

performer for each combination of classifier and feature selection

technique, at no time does using feature selection alone outperform

all possible approaches for data sampling.

Now that we see that data sampling does have a benefit, we

must now look at the choice of final class ratio. When we look

at the results using RUS we see that in twelve out of eighteen

scenarios (66.7%), 35:65 outperforms 50:50. We see the same

trend in terms of the individual feature selection techniques, with

35:65 outperforming 50:50 for 66.7% of the scenarios. In terms

of the individual classifiers we see that for each classifier 35:65

will outperform 50:50 in at least 66.7% of the scenarios with

the exception of 5-NN which has 50:50 outperforming 35:65

for all scenarios using RUS. However, for LR and RF100 35:65

outperforms 50:50 for all scenarios.

Looking at ROS, we see that for thirteen of the eighteen scenar-

ios (72.2%) 35:65 outperforms 50:50. In terms of the individual

feature selection techniques, we see that for each feature selection

technique 35:65 will outperform 50:50 for at minimum 50% of

the scenarios. In fact, the feature selection technique IG has 35:65

as the top performing class ratio for all scenarios. In terms of

the individual classifiers we see that for each classifier 35:65 will

outperform 50:50 in at least 50% of the scenarios for all scenarios
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Table I
DETAILS OF THE DATASETS

Name
# Minority Total # % Minority # of Average
Instances of Instances Instances Attributes AUC

GSE1456 [19] 40 159 25.16% 12066 0.6108
GSE20271 [21] 26 178 14.61% 22284 0.5867
GSE25055 [6] 57 306 18.63% 22284 0.6674
GSE25065 [6] 42 182 23.08% 22284 0.6384

GSE3494-GPL96-ER [18] 34 247 13.77% 22284 0.7688
GSE3494-GPL96-Grade [18] 54 249 21.69% 22284 0.8176

Lung 50k [8] 70 400 17.50% 54614 0.8150

Table II
CLASSIFICATION RESULTS: DATA SAMPLING APPROACHES

Feature
Classifier

Data Sampling approaches
Selection

None
RUS ROS SMOTE

Technique 35:65 50:50 35:65 50:50 35:65 50:50

IG

5NN 0.74699 0.76571 0.77382 0.74887 0.74226 0.75668 0.75407
LR 0.73369 0.72706 0.69496 0.73952 0.73871 0.73753 0.73455

MLP 0.76290 0.77882 0.78020 0.75775 0.74962 0.75964 0.75381
NB 0.79395 0.80644 0.80289 0.80585 0.80510 0.80262 0.80082

RF100 0.78543 0.79975 0.79491 0.79365 0.79241 0.79764 0.79515
SVM 0.76941 0.78481 0.77905 0.78100 0.78019 0.77947 0.77452

ROC

5NN 0.75668 0.78226 0.79442 0.77681 0.77202 0.78057 0.77275
LR 0.73371 0.71295 0.70715 0.74210 0.74259 0.74026 0.73637

MLP 0.76516 0.78739 0.78636 0.76281 0.76768 0.77162 0.75595
NB 0.80350 0.80330 0.80168 0.80918 0.80875 0.81044 0.81000

RF100 0.79000 0.80251 0.80199 0.80353 0.80645 0.80553 0.80563
SVM 0.76741 0.79095 0.79281 0.79193 0.79060 0.79187 0.78666

S2N

5NN 0.74728 0.77195 0.77751 0.74671 0.74088 0.75544 0.75269
LR 0.74001 0.71915 0.69507 0.74437 0.74551 0.74264 0.73871

MLP 0.77712 0.78266 0.78050 0.77079 0.75933 0.77243 0.75921
NB 0.79979 0.79995 0.80120 0.80057 0.80074 0.80040 0.79937

RF100 0.78680 0.79270 0.79021 0.79424 0.78935 0.79124 0.79027
SVM 0.77347 0.78267 0.78172 0.78363 0.77955 0.78065 0.77736

Table III
ANOVA RESULTS: DATA SAMPLING APPROACHES

Source Sum Sq. d.f. Mean Sq. F Prob>F
Technique 0.083 6 0.01379 0.71 0.6386

Error 340.736 17633 0.01932
Total 340.818 17639

using ROS with the exception of LR. Additionally, for 5-NN and

SVM 35:65 outperforms 50:50 for all feature selection techniques.

Lastly, when we look at SMOTE, we see that for seventeen out

of eighteen scenarios (94.4%) 35:65 outperforms 50:50. In terms

of the individual feature selection techniques and classifiers we

see that 35:65 is the most frequent top performing class ratio.

Additionally, we see that for the feature selection techniques IG

and S2N as well as the classifiers LR, MLP, NB, and SVM that

35:65 outperforms 50:50 for all scenarios.

When we look across all of the factors, we see that 35:65

outperforms 50:50 for forty-two of the fifty-four (77.8%) scenarios.

Additionally, there is no classifier or feature selection technique in

which 35:65 is not the most frequent top performing class ratio

across all three data sampling techniques. These facts allow us to

state that 35:65 allows for better classification performance than

50:50.

In terms of the top performing data sampling approach to

choose for each combination of feature selection technique and

classifier, we see that RUS is the most frequent top performing data

sampling technique with eleven of the possible eighteen (61.1%)

combinations: five for 35:65 and six for 50:50. However, despite

50:50 having one more top performing approach count than 35:65,

because 35:65 more frequently outperforms 50:50 within RUS and

the lower data loss due to utilizing 35:65, we still recommend using

35:65 over 50:50 when using RUS.

In order to further validate the results in our classification

experiments, we performed a one-factor ANalysis Of VAriance

(ANOVA) test [4] with the choice of data sampling approach being

the factor, across the seven datasets to determine if the choice

of data sampling approach has any significant effect on the AUC

levels. When we look at Table III we see that the choice of data

sampling approach is not a significant factor. This is shown by

the Prob>F score being above 0.05. While this indicates that

the choice of data sampling approach is not significant, it is our

recommendation to utilize RUS with 35:65 as the class ratio due

to its frequency as the top performing data sampling approach,

because the class ratio of 35:65 can reduce the amount of data loss

or overfitting cause by sampling to a ratio of 50:50, and because
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RUS will reduce the total amount of data and make further data

mining procedures more computationally efficient.

V. CONCLUSION

Class imbalance is a prevalent problem found in bioinformatics

datasets which can cause a number of complications for data

analysis. A potential tool for combating class imbalance is data

sampling. Commonly, the end results of data sampling is a perfectly

balanced dataset (a class ratio of 50:50). However, the question

remains: is the inclusion of data sampling beneficial and if so, is

50:50 the appropriate final class ratio for all scenarios, especially

for datasets with extremely high levels of class imbalance? In this

work, we compare feature selection with no data sampling with

six different data sampling approaches: feature selection with one

of six combinations of three data sampling techniques (RUS, ROS,

and SMOTE) and two final class ratios (50:50 and 35:65). In order

to test the six data sampling approaches along with feature selection

alone we used a series of seven highly imbalanced datasets along

with three feature selection techniques, and six classifiers.

Our results show that for a majority of scenarios RUS with

50:50 and RUS with 35:65 are the two most frequent top per-

forming data sampling approaches. Additionally, we found that for

a large majority of scenarios that an approach with data sampling

outperforms the approach without data sampling and at no point

does the feature selection alone become the top performing choice

for any combination of feature ranker and classifier. We also

performed a one factor ANOVA tests where the factor was the

choice of of the data sampling approach. It was found that the

choice of data sampling approach was not significant. Nonetheless,

because RUS is the most frequent top performing data sampling

technique (while being more computationally efficient than any

other approach, including “no sampling”) and given that the 35:65

class ratio can mitigate some of the data loss or overfitting of

sampling with a 50:50 ratio, and because 35:65 did perform better

than 50:50 more often than the reverse with all three data sampling

techniques, we recommend using RUS with 35:65 as the class ratio

for bioinformatics datasets which are highly imbalanced.

Future work in this area consists of including more datasets both

within this application domain and in other domains to further

confirm our results as well as other approaches towards combining

data sampling and feature selection. In addition, works could con-

sider a larger range of class ratios, although the lack of statistical

significance found in this paper suggests that such variations might

only have slight impacts on classification performance.
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