
On Sorting Under Special Transpositions

Jici Huang

School of Computing

University of North Florida

Jacksonville, Florida 32224

Email: j.huang@unf.edu

Swapnoneel Roy

School of Computing

University of North Florida

Jacksonville, Florida 32224

Email: s.roy@unf.edu

Abstract—In this paper, we study a genome rearrangement
primitive called block moves. This primitive as a special case
of another well studied primitive transposition. We revisit the
problem of BLOCK SORTING, which is a sorting problem under
the primitive block moves in this work. BLOCK SORTING has
been shown to be NP-Complete, and a couple of results have
designed factor 2 approximation algorithms for the problem
- the best known till date. However whether the problem is
APX-Hard, or an improvement over the factor 2 approxi-
mation algorithms have been interesting open problems. We
design a new factor 2 approximation algorithm for BLOCK

SORTING. Our algorithm is equal to the best known in terms
of approximation ratio, however, our approach is much simpler
and is linear time (O(n)) as compared to the cubic (O(n3))
and quadratic (O(n2)) run-times of the existing algorithms for
the problem.

Keywords-Block Sorting; Transpositions; Optical Character
Recognition;

I. INTRODUCTION

Genome and other syntenic blocks rearrangements have

become a topic of intensive study by phylogenists, compar-

ative genomicists, and computational biologists: they are a

feature of many cancers, must be taken into account to align

highly divergent sequences, and constitute a phylogenetic

marker of great interest. The mathematics of rearrangements

is far more complex than for indels and mutations in

sequences. Genome rearrangements have been modeled by a

variety of primitives such as reversals, transpositions , block

moves and block interchanges. The problem of genome

rearrangement has been modeled as equivalent to sorting

a permutation under a single or a combination of such

primitives.

Genome is the entire DNA of a living organism. Gene

is a segment of DNA that is involved e.g. in producing a

protein, and its orientation depends on the DNA-strand that

it lies on. Genome consists of chromosomes. Chromosomes

are linear or circular.

Biologists are mostly interested in comparing species, for

example:

1) In order to classify them

2) In order to explain evolution by reconstructing scenar-

ios

Figure 1. Genome Rearrangement

(Dis)similarity measures are needed to achieve these. The

measures are usually based on the sequenced genomes.

The methodology used is to use a single or a combination

of well defined primitives to transform one genome into the

other. The number of primitive steps needed to transform

one genome into another is a measure for the evolutionary

distance between the two species.

GENOME REARRANGEMENT can be formally stated as:

GENOME REARRANGEMENT PROBLEM

INPUT: Genomes G1, G2, a set S of mutations.

GOAL: Find a shortest sequence of elements of S
that transforms G1 into G2.

A related, simpler problem is to compute the evolutionary

distance dS(G1, G2) (i.e. just the length of a shortest se-

quence). There are many variants of the above problems,

depending on how genomes are modelled, and what (and

how) mutations are taken into account, etc.

In the model we work genomes are represented by per-

mutations.

Therefore in our model genomes:

1) Form ordered sequences of genes (or other segments),

and

2) Only differ by order (no duplications or deletions).

The individual genes in the genomes can be numbered

as we wish, so we assume the target genome is always

the identity or sorted permutation id = 12 · · ·n. Hence

GENOME REARRANGEMENT becomes a sorting problem

where we wish to sort the other (starting) genome.

2014 IEEE 14th International Conference on Bioinformatics and Bioengineering

978-1-4799-7502-0/14 $31.00 © 2014 IEEE

DOI 10.1109/BIBE.2014.37

325

GENOME REARRANGEMENT (SORTING PERMUTATIONS)

INPUT: A permutation π, a well defined sorting primitive S.

GOAL: dS(π), a shortest sorting sequence

applying S on π at each step that transforms π into id.

Some well known primitives for genome rearrangements

are transpositions [1], [2], [3], reversals (aka inversions) [4],

[4], block moves (aka strip moves) [5], [6], [7], [8], block

interchanges [9], prefix reversals [10], strip exchanges [11]

etc. At times, a combination of more than one primitives

is used to determine the distance (e.g. transreversals: a

combination of transpositions and reversals) [12].

These sorting problems are combinatorial optimization

problems in which the number of steps required to sort

an arbitrary permutation is optimized. While the sorting

by reversals [13], transpositions [2], prefix reversals [14],

and block moves [6] have been proven to be NP-Hard,

the computational complexity of the sorting by strip ex-

changes problem still remains open. The sorting by block

interchanges problem is one of the very few such problems

which has been proven to be polynomially solvable. An

O(n2) exact algorithm exists for this problem [9].

Again, the similarity between two sequences will be mea-

sured by the minimum number of operations to transform

one sequence into the other. Since the target sequence

is always 1, 2, · · · , n we view the problem as a sorting

problem. But this is not a usual sorting problem which we

are familiar with. Our sorting problem is to sort a sequence

in such a way that the number of operations is minimized. In

other words, we are interested in finding algorithms which

always sort a sequence with minimum number of operations

(transpositions, reversals, block moves, etc.).

We work on the primitive block moves in this paper. Block

moves (aka strip moves) is a special case of another primitive

transpositions. A block in a permutation π is a maximal

sequence of consecutive elements that are also consecutive

in the identity (sorted) permutation id. Sorting via block

moves or BLOCK SORTING is to find the shortest sequence

of blocks to be moved bs(π) to sort a given permutation

π. BLOCK SORTING is also a nontrivial variation of SORT-

ING BY TRANSPOSITIONS. SORTING BY TRANSPOSITIONS

arises in the context of genome rearrangements in compu-

tational biology. In transpositions, we are allowed to move

any substring of π (not necessarily a block) to a different

position at each step [1]. SORTING BY TRANSPOSITIONS is

to compute the minimum number of such moves to sort

π, it has been recently shown to be NP-Hard [2], the

current best known algorithm has an approximation ratio

of 1.375 [3], and is not known whether it admits a PTAS.

It is not known yet whether BLOCK SORTING approximates

SORTING BY TRANSPOSITIONS to any factor better than

3. However, it is known that optimal transpositions never

need to break existing blocks [7]. This shows how the two

Figure 2. An example of a block move

problems are closely related. The study of the computational

complexity of BLOCK SORTING therefore might provide

us with more insight into the complexity of SORTING BY

TRANSPOSITIONS.

The decision version of BLOCK SORTING has been shown

to be NP-Hard [6]. After being known to be 3-approximable

in [5], and [6], some results have designed 2-approximation

algorithms [5], [7], [8]. However, no polynomial time

approximation hardness results are known.

Our Contributions: Our main motivation is to improve the

current best approximation ratio for BLOCK SORTING. We

design another 2-approximation algorithm for the problem.

Our algorithm has an approximation factor equal to the

best known currently, but it runs in O(n) (linear time) as

compared to the O(n2) (quadratic time) of the algorithm

of [5], and the O(n3) (cubic time) of the algorithm of [7].

Also our algorithm is much simpler to implement and

analyze than the two existing algorithms.

The rest of the paper is structured in the following manner.

Section. II introduces certain key concepts important to our

analysis. Section III talks about our new approximation

algorithm for BLOCK SORTING and analyzes it. Finally,

Section IV summarizes the results and discusses future

research directions.

II. PRELIMINARIES

The set {1, 2, · · · , n} is denoted by [n], and let Sn denote

the set of all permutations over [n], and idn the sorted or

identity permutation of length n. The given permutation π ∈
Sn to be sorted is represented as a string π1π2 · · ·πn without

loss of generality.

Block, Block Move. A block in a permutation π is a

maximal sequence of consecutive elements that are also

consecutive in the identity permutation id. In other word,

a block is a maximal substring of a given permutation π,

which is also a substring of the identity permutation id. As

an example, the permutation 8 2 5 6 3 9 1 4 7 contains 8
blocks, and 5 6 is the only block of length more than one.

A block move picks up a block and places it elsewhere in the

permutation. Fig. 2 shows a block move on a permutation

π to obtain the permutation π′.
Block Sorting Schedule. A block sorting schedule S is a

sequence of block moves such that performing the sequence

of block moves on permutation π results in the identity

permutation id. The length of a block sorting schedule is

326

Figure 3. An example of a block sorting schedule

the number of block moves in the schedule. Block sorting

distance bs(π) is the number of a block moves in a minimum

length block sorting schedule for π. A block sorting schedule

is shown on permutation 8 2 5 6 3 9 1 4 7 in Fig. 3. The

block moves are indicated at each step.

Kernel Permutation. Kernelizing a permutation is to re-

place each block by an element which is its rank among the

blocks. Hence the permutation 7 2 5 3 8 1 4 6 is equivalent

to 8 2 5 6 3 9 1 4 7. This can be done because we do not

break blocks once they get joined to form larger blocks in

a block move. The permutation where each block of π is

replaced by its rank among the blocks is termed as a kernel

permutation ker(π) [8] for π (aka a reduced permutation

in [6]). In ker(π), each block is of length 1.

BLOCK SORTING can be formally stated as:

BLOCK SORTING PROBLEM

INPUT: A permutation π and an integer m.

QUESTION: Is bs(π) ≤ m?

In [8], it has been formally proved that block sorting π is

equivalent to block sorting its kernel ker(π). That is bs(π) =
bs(ker(π)). Also it was shown in [8], that in an optimal

block sorting sequence, we never need to break apart an

existing block at any step. That is the block sorting distance

remains the same, even if we allow block sorting moves

which do not necessarily join blocks, or which break any

previously joined blocks. Hence we treat blocks as single

elements in this work without loss of generality, and use the

relations <, and > on blocks in their usual senses. For a

block a ∈ π, we denote its position in π by π(a).
Reversal. In a permutation π, a pair of consecutive elements

(blocks) a and b form a reversal if a > b, and π(b) = π(a)+
1. Denote the number of reversals in π by rev(π). In [8],

it has been shown that a block sorting sequence of length

rev(π) is optimal, since the block sorting distance bs(π) ≥
rev(π). As an example, the reversals in the permutation 8

2 5 6 3 9 1 4 7 are {(8, 2), (5 6 , 3), (9, 1)).
Inversion. In a permutation π, a pair of elements (blocks)

a and b form an inversion if a = b + 1, and π(a) > π(b).

Inversions are also called dual reversals in [8]. Denote the

number of inversions in π by inv(π). In [8], it has been

shown that a block sorting sequence of length inv(π) is

optimal, since the block sorting distance bs(π) ≥ inv(π).
As an example, the inversions in the permutation 8 2 5 6 3

9 1 4 7 are {(1, 2), (4, 5 6), (7, 8)).
Run. Another important concept in a permutation π is a run.

The blocks {a, a+1, a+2, . . . , a+r} form a run of length r
if, r is the largest values such that π(a) < π(a+1) < π(a+
2) < . . . < π(a+ r). Then number of runs in π is denoted

by runs(π). As an example, the runs in the permutation 8

2 5 6 3 9 1 4 7 are {(1), (2, 3, 4), (5 6 , 7), (8, 9)).

III. A 2 APPROXIMATION ALGORITHM FOR BLOCK

SORTING

Lower Bounds. For permutation π, let

1) n be the number of blocks in π,

2) i be the number of inversions in π, i.e. inv(π) = i,
3) b be the number of reversals in π, i.e. rev(π) = b,
4) r be the number of elements (blocks) in the longest

run of π.

Then bs(π) ≥ max{i, b, n−1− (i+ b)} [6]. Algorithm 1

describes our new approximation. In simple words, we find

the longest run in π, we keep the r elements of that run

intact. We move every other block to obtain the sorted

permutation id.

Data: The input permutation π
Result: The sorted permutation id
Find the longest run R in π;

while π is not sorted do

/* For a block B /∈ R */

if B is not in proper position then

Move B either before B + 1 or after B − 1;

end

end

Algorithm 1: Approximate block sorting.

Theorem 1. Algorithm 1 is a 2 approximation algorithm

for BLOCK SORTING.

Proof: The above algorithm takes at most n− r moves

where n is the number of blocks in π. The approximation

ratio is thus n−r
max{i,b,n−1−(i+b)} . We show this ratio to be at

most 2 by exploring different values of n− 1− (i+ b).

1) Case I. n − 1 − (i + b) < 0. In this case we have

n − 1 < (i + b). Since n − r ≤ n − 1, therefore
n−r

max{i,b,n−1−(i+b)} < i+b
max{i,b,n−1−(i+b)} ≤ 2 de-

pending on whether max{i, b, n− 1− (i+ b)} equals

i or b. We note both i and b are ≥ n− 1− (i+ b) in

this case, since both are always ≥ 0.

327

2) Case II. n − 1 − (i + b) ≥ 0. Let us consider the

following sub-cases.

a) Case IIa. n − 1 − (i + b) < i + b. Therefore

n− 1 < 2(i+ b). Let us assume n−r
n−1−(i+b) ≤ 2.

Then we have n − r ≤ 2(n − 1) − 2(i + b).
Substituting 2(i+ b) by n− 1 we have n− r <
2(n− 1)− (n− 1). This implies n− r < n− 1
must be true for the condition n−r

n−1−(i+b) ≤ 2 to

be true. We note n− r < n−1 is true for r > 1.

In general we have r ≥ 1 (since r is the number

of blocks in the longest run of π). We further

note r = 1 would imply π to be either sorted

(equal to id) or be the reverse permutation (falls

under Case I).

b) Case IIb. n − 1 − (i + b) ≥ i + b. Therefore

n − 1 ≥ 2(i + b), or n−1
2 ≥ (i + b). Here we

have n−r
n−1−(i+b) ≤

n−1
n−1−(i+b) ≤

n−1
n−1−n−1

2

= 2.

Theorem 2. Algorithm 1 runs in linear time O(n), where

n is the number of blocks in π.

Proof: Finding the longest run in π takes O(n) time.

The remaining part of the algorithm takes at most n−r block

moves which is again O(n). Therefore the total runtime is

O(n).

IV. CONCLUSION

In this paper, our key contribution is a simpler 2 approx-

imation algorithm for the BLOCK SORTING problem. This

might lead to an algorithm with a better approximation fac-

tor, something which has been open for over a decade. Also

it would be interesting to know whether BLOCK SORTING

admits a PTAS or is APX-Hard. The latter result might

lead to similar results for the more generalized SORTING

BY TRANSPOSITIONS problem.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers of IEEE

BIBE 2014 to help improve the quality of this paper.

REFERENCES

[1] V. Bafna, Pavel, and A. Pevzner, “Sorting by transpositions,”
SIAM Journal on Discrete Mathematics, 1998.

[2] L. Bulteau, G. Fertin, and I. Rusu, “Sorting by transpositions
is difficult,” in Proceedings of the 38th International Collo-
quim Conference on Automata, Languages and Programming
- Volume Part I, ser. ICALP’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 654–665. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2027127.2027197

[3] I. Elias and T. Hartman, “A 1.375-approximation algorithm
for sorting by transpositions,” IEEE/ACM Trans. Comput.
Biol. Bioinformatics, vol. 3, no. 4, pp. 369–379, Oct. 2006.
[Online]. Available: http://dx.doi.org/10.1109/TCBB.2006.44

[4] V. Bafna and P. A. Pevzner, “Genome rearrangements
and sorting by reversals,” SIAM J. Comput., vol. 25,
no. 2, pp. 272–289, Feb. 1996. [Online]. Available:
http://dx.doi.org/10.1137/S0097539793250627

[5] W. W. Bein, L. L. Larmore, L. Morales, and I. H. Sudborough,
“A faster and simpler 2-approximation algorithm for block
sorting,” in Proceedings of the 15th International Conference
on Fundamentals of Computation Theory, ser. FCT’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 115–124.
[Online]. Available: http://dx.doi.org/10.1007/11537311 11

[6] W. Bein, L. Larmore, S. Latifi, and I. Sudborough, “Block
sorting is hard,” in Parallel Architectures, Algorithms and
Networks, 2002. I-SPAN ’02. Proceedings. International Sym-
posium on, 2002, pp. 307–312.

[7] M. Mahajan, R. Rama, and S. Vijayakumar, “Block
sorting: A characterization and some heuristics,” Nordic
J. of Computing, vol. 14, no. 1, pp. 126–150, Jan.
2007. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1515784.1515790

[8] M. Mahajan, R. Rama, V. Raman, and S. Vijaykumar,
“Approximate block sorting,” International Journal of
Foundations of Computer Science, vol. 17, no. 02, pp. 337–
355, 2006. [Online]. Available: http://www.worldscientific.
com/doi/abs/10.1142/S0129054106003863

[9] D. A. Christie, “Genome rearrangement problems,” Ph.D.
dissertation, 1999.

[10] W. H. Gates, “Bounds for sorting by prefix reversal,” Discrete
Mathematics, pp. 47–57, 1979.

[11] S. Roy and A. Thakur, “Towards construction of optimal strip-
exchanging moves,” in Bioinformatics and Bioengineering,
2007. BIBE 2007. Proceedings of the 7th IEEE International
Conference on, Oct 2007, pp. 821–827.

[12] D. Christie and R. Irving, “Sorting strings by reversals and
by transpositions,” SIAM Journal on Discrete Mathematics,
vol. 14, no. 2, pp. 193–206, 2001. [Online]. Available:
http://dx.doi.org/10.1137/S0895480197331995

[13] A. Caprara, “Sorting by reversals is difficult,” in
Proceedings of the First Annual International Conference
on Computational Molecular Biology, ser. RECOMB ’97.
New York, NY, USA: ACM, 1997, pp. 75–83. [Online].
Available: http://doi.acm.org/10.1145/267521.267531

[14] L. Bulteau, G. Fertin, and I. Rusu, “Pancake flipping is
hard,” in Proceedings of the 37th International Conference
on Mathematical Foundations of Computer Science, ser.
MFCS’12. Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 247–258. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-32589-2 24

328

