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Abstract— There have been many studies that depict genotype-
phenotype relationships by identifying genetic variants associated 
with a specific disease. Researchers focus more attention on 
interactions between SNPs that are strongly associated with 
disease in the absence of main effect. In this context, a number of 
machine learning and data mining tools are applied to identify 
the combinations of multi-locus SNPs in higher order data. 
However, none of the current models can identify useful SNP-
SNP interactions for high dimensional genome data. Detecting 
these interactions is challenging due to bio-molecular 
complexities and computational limitations. The goal of this 
research was to implement associative classification and study its 
effectiveness for detecting the epistasis in balanced and 
imbalanced datasets. The proposed approach was evaluated for 
two locus epistasis interactions using simulated data. The 
datasets were generated for 5 different penetrance functions by 
varying heritability, minor allele frequency and sample size. In 
total, 23,400 datasets were generated and several experiments are 
conducted to identify the disease causal SNP interactions. The 
accuracy of classification by the proposed approach was 
compared with the previous approaches. Though associative 
classification showed only relatively small improvement in 
accuracy for balanced datasets, it outperformed existing 
approaches in higher order multi-locus interactions in 
imbalanced datasets. 

Keywords— Epistasis, multi-locus, associative classification, 
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I.  INTRODUCTION  

There are many complex diseases where no single 
factor on its own has been identified as a predictor for the 
cause or presence of the disease. Rather, a multitude of 
interacting factors seem to be at play, making these diseases 
complex. Many complex diseases are believed to be caused by 
the combination of genetic, environmental and lifestyle 
factors. Some examples include breast cancer, diabetes, cystic 
fibrosis, multiple sclerosis, obesity, asthma, sickle cell 
anaemia and Alzheimer’s disease [1]. About 99% of the 
human genome is identical, with only 1% variations in the 
DNA sequences of the chromosome [2]. Single Nucleotide 
Polymorphisms (SNPs) are the variations in the sequence of 
DNA when a single nucleotide sequence is altered. It has been 

estimated that about 12 million SNPs occur along the 3-
billion-base human genome [3]. The consequences of SNPs 
may influence disease susceptibility or response to drugs or 
differences in physical appearance. A number of studies have 
focused on the role of SNPs and their associations in revealing 
the genetic epidemiology of disease susceptibility.  

The conventional single locus SNP methods [4, 5] 
such as Chi-squared test or Fisher’s exact test, are used to 
identify the SNPs which have high association with a 
particular disease. Highly ranked SNPs are considered to be 
highly associated with the disease. These parametric strategies 
ignored genetic and environmental factors involved in 
complex multi-collinearity with other loci. Hence, alternative 
methods were proposed which include logistic regression 
(LR)[6], penalized logistic regression [7], Monte Carlo logic 
regression [8], full Bayesian logic regression[9] and genetic 
programming for association studies [10]. The major 
challenges of these parametric methods are model specific and 
they are computationally complex due to the curse of 
dimensionality (that is, n way interactions require 2n 
regression equations). Consequently, these limitations 
increased an intensive research towards data mining and 
machine learning approaches for identifying multi-locus SNP 
interactions in high dimensional data. 

Multi-Dimensionality Reduction (MDR) [11-13] is 
an effective data reduction model focused on identifying 
interactions in the high dimensional search space using 
constructive induction. This non-parametric model missed a 
few disease causal interacting SNPs due to pooling too many 
multilocus genotype cells together. The model is restricted to a 
small number of SNPs. The model classifies each cell either as 
high risk or low risk without assessing the proportion of the 
risk level. The efficiency of the method is reduced in the 
presence of high genetic heterogeneity and phenocopy. Hence, 
several extended strategies are proposed by addressing these 
limitations. Some of the extended strategies of MDR are Odd 
Ratio based MDR (OR-MDR) [14], Generalized MDR 
(GMDR) [15], Model based MDR (MB-MDR) [16-18] and 
Robust MDR (RMDR) [19]. These approaches are 
successfully applied over genetic data [11, 14-16, 19].  
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Tree based classification algorithms such as decision 
trees [20] and random forests (RF) [21] are high dimensional 
predictive models which uncover the interactions between 
genes that do not have strong marginal effects. However, RF 
contradictorily requires a marginal effect in at least one of the 
SNP interacting pair. This reduces the power of identifying the 
interactions between SNPs using RF models. The extended RF 
strategies are EpiForest [22], Random Jungle (RJ) [23], 
RFCouple [24], SNPInterForest [25], Stratified sampling RF 
(SRF)  and TRM [26]. These approaches are successfully 
applied and analysed over real genetic data [23, 25-28].  

Support Vector Machine (SVM) [29] is a potentially 
powerful pattern matching supervised learning approach. The 
approach not only provides interpretable results but also 
differentiate cases and controls. However, it may not cope 
well with missing data and the efficiency is reduced in the 
presence of genetic heritability. Neural Networks (NN) [29] 
resemble a directed graph which performs powerful pattern 
recognition and classification. They are capable of handling 
large volumes of data by addressing genetic heterogeneity, 
polygenic inheritance, high phenocopy rates and incomplete 
penetrance. However, it gives spurious results in three 
dimensional models and their output binary trees are difficult 
to interpret.  

Despite their limitations, the existing approaches 
identify the existence of major proportions of interacting 
genes at multi-locus. However, none of these models could 
expose SNPs at a locus which can have a stronger association 
with a disease and a weaker association for another disease. In 
a few cases, a SNP may not be directly associated with the 
disease, but may influence the nearest genes to be associated 
with the disease. Further, the accuracy of the current models is 
degraded in imbalanced datasets by increasing the 
classification errors. Hence, there is no single model which 
can uncover the complexity of genetic architecture by 
identifying disease causal SNPs and their interactions between 
genes.  

In this paper, a new approach based on associative 
classification is implemented to identify the interactions more 
effectively than the existing methods. The proposed approach 
will classify the subjects by determining the complexity of 
interactions and their associations with the disease. The goal 
of this study is to evaluate the proposed approach on the 
simulated data by varying heritability, minor allele frequencies 
and case control ratio. The study identified SNP-SNP 
interactions of order 2 for both balanced and imbalanced 
datasets. Finally, the approach is validated in terms of 
accuracy and compared with previous methods under the same 
simulated scenarios.  

Associative classification is briefly reviewed and 
then applied to the present problem in Section II - A. Data 
Simulation scenarios and Data Analysis are explained in 
Section II - B and Section II - C. Results and discussion are 
included in Section III. Section IV contains the conclusion and 
some directions for further work.  

II. METHODS 

A. Associative classifier 
Associative Classifiers (AC) have been successfully 

implemented in data mining to build more efficient and 
accurate classifiers than traditional techniques [30]. The 
approach integrates association rule discovery and 
classification. In general, association rules generated from 
frequent itemsets are used to classify data based on the class 
labels. The steps involved in the Associative classification are: 
a) Identifying frequently occurring conjunctions of attribute – 
value pairs (frequent itemsets) in training dataset b) 
Generating class based association rules (CARs) from frequent 
itemsets, which satisfy confidence and support criteria  c) 
Pruning and ranking these CARs to organise for the 
classification, and d) Classifying the test dataset into 
predefined class labels. Some of the proposed ACs are 
Classification Based on Association (CBA) [31], 
Classification based on Multiple Association rules (CMAR) 
[32], Classification based on Predictive Association Rules 
(CPAR) [33], and Live and Let Live ( L3) [34].   

To formulate SNP interactions as an AC problem, let 
D be a relation of tuples, whose schema is represented by n 
distinct attributes SNP1, SNP2,….., SNPn and a class attribute 
C. Let C be a finite set of class labels with case c1 and control 
c2 respectively, where, ci � C. The attributes are treated as 
categorical where the class labels are known in training data 
instances in D and the class labels are unknown in testing data 
instances. Each instance tuple in D is represented as ti = (vi1, 
vi2, …, vin, ci) where vi1 is an item value for SNP1, vi2 for 
SNP2,  etc and ci is a class label. Association rule R is 
generated in the form of X � Y which matches a tuple t � D 
when X � t. X is the antecedent which represents interacting 
SNPs associated with the class label and Y the consequent 
which represents either case or control. Support and 
Confidence are the two parameters used to measure the quality 
of association rules. Support is the number of tuples in D 
containing X�Y and confidence is the number of tuples 
matching X�Y divided by the number of tuples containing X. 
The CARs are organised and ranked by computing support 
and confidence along with the rule cardinality (measure of 
number of elements of the rule). Redundant and noisy rules 
are discarded in the rule pruning phase that passes minimum 
support and confidence thresholds. Several pruning techniques 
(such as pessimistic error, database coverage, chi-square, 
redundant rule and lazy pruning) are adopted to reduce the 
size of AC. Hence, most significant and high quality rules are 
selected to form a more accurate and efficient classification 
model. These rules are used to classify the test data. Finally, 
the accuracy of classification for the dataset is calculated as 
the ratio of number of objects correctly classified to the total 
number of objects in the test data.  

B. Data Simulation 
The goal of this simulated study is to detect 

interactions between multi-locus SNPs using the AC 
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approach. Two simulated scenarios are considered to evaluate 
the accuracy of AC with the previous approaches in the 
absence of main effect.  

Scenario I 

In the first scenario, six two locus epistasis (gene-
gene interactions) models with different penetrance values are 
simulated for 20 SNPs with two functional SNPs (P1 and P2) 
and 18 independent non-functional SNPs. Case-control 
datasets are simulated with 200 cases and 200 controls in 
accordance to Hardy-Weinberg proportions [13]. Figure 1 
represents the overview of model dependent allele frequencies 
along with their penetrance tables. A simple model of two 
alleles (p and q) necessarily sums to unity.  That is, p+q = 1 
where p is minor allele frequency and q is the alternative allele 
frequency. Model 1 is based on nonlinear XOR function 
described by [35, 36] in which all high risk genotype 
combinations (AaBB, Aabb, AABb and aaBb) have a 
penetrance value of 0.1. Model 2 is described by [36, 37] in 
which high risk genotype combinations (AAbb, AaBb and 
aaBB) have penetrance values 0.1, 0.05 and 0.1 respectively. 
Other four models are described by [36] with Minor Allele 
Frequencies (MAFs) of 0.25, 0.25, 0.1 and 0.1 respectively. 
Cases and controls of 1:1, 1:2, 1:4, and 1:6 ratios are 
generated for 400 samples. 100 datasets are simulated for each 
model in order to evaluate the power of AC by estimating the 
number of times the approach successfully identified two 
functional SNPs. In total, 2,400 datasets are generated and 
analysed in the absence of main effect. 

BB Bb bb

AA 0 0.1 0

Aa 0.1 0 0.1

aa 0 0.1 0

BB Bb bb

AA 0.7 0.05 0.02

Aa 0.05 0.09 0.01

aa 0.02 0.01 0.03

BB Bb bb

AA 0 0 0.1

Aa 0 0.05 0

aa 0.1 0 0

BB Bb bb

AA 0 0.01 0.09

Aa 0.04 0.01 0.08

aa 0.07 0.09 0.03

BB Bb bb

AA 0.08 0.07 0.05

Aa 0.1 0 0.1

aa 0.3 0.1 0.04

BB Bb bb

AA 0.09 0.001 0.02

Aa 0.08 0.07 0.005

aa 0.003 0.007 0.02

Model 1, p=0.5, q=0.5 Model 2, p=0.5, q=0.5 Model 3, p=0.25, q=0.75

Model 4, p=0.25, q=0.75 Model 5, p=0.1, q=0.9 Model 6, p=0.1, q=0.9

Fig.1: Penetrance functions and minor allele frequencies used to simulate case-control
data exhibiting multilocus SNP-SNP interactions in absence of main effects [13].

 

Scenario II 

In the second scenario, datasets are replicated as in 
the simulated study performed by Velez, D.R., [12] with 20 
SNPs. Among these 2 SNPs are functional and 18 SNPs are 
non- functional. The two locus interaction models are 
generated from publicly available tool GAMETES [38]. The 
tool generates randomly pure and strict n-locus disease models 
with specified heritability, minor allele frequency and quantile 
population size. In this simulated scenario, two locus epistasis 

models are distributed across seven heritability (0.01, 0.025, 
0.05, 0.1, 0.2, 0.3 and 0.4) and two different minor allele 
frequencies (0.2 and 0.4). Five models for each 14 heritability-
allele frequency combinations are generated to develop 70 
models in accordance to Hardy-Weinberg proportions. The 
penetrance tables are generated for these 70 models in the 
absence of main effect. One hundred datasets are generated for 
each model with sample size of 400. The case-control ratios of 
the samples are 1:1, 1:2, and 1:4. In total, 21,000 datasets are 
generated and analysed to identify the two way interactions in 
the absence of main effect.  

C. Data Analysis 
The datasets for both scenarios are analysed using the 

latest MDR software tool available from www.epistasis.org. 
The data is exhaustively evaluated for all the possible two 
locus interactions between SNPs using the naïve Bayes 
classifier. Balanced accuracy is estimated using 10 fold cross 
validation for both training and testing data. Finally, a best 
model with high testing accuracy and high cross validation 
consistency is selected. The power of MDR has been 
estimated by the number of times the functional SNPs are 
identified in 100 datasets of each model. The final results are 
statistically evaluated with a 1000 fold permutation test and 
whose p-values are compared with 0.05 in determining the 
significance of the findings. The datasets for both scenarios 
are analysed using the associative classifier. The accuracy of 
AC algorithms is analysed using 10 fold cross validation and 
the disease causal SNPs are identified. Among the many 
methods and software implementations that have been used to 
investigate the interactions between SNPs, the most prominent 
approaches for identifying genetic effects in the presence of 
interactions are MDR, RF, SVM and NN. Further, Naïve 
Bayes algorithm is also considered in this paper as it is a well-
established machine learning method and has been 
successfully applied in analysing GWAS data. Both scenarios 
are analysed using RF, SVM, NN and Naïve Bayes 
algorithms. Ten Fold cross validation is performed to reduce 
the possibility of biased estimation due to the division of data. 

III. RESULTS AND DISCUSSION 

Several experiments were performed over 23,400 
datasets to evaluate the accuracy of AC over other approaches. 
The goal of this study is to determine whether AC is a better 
approach for identifying the higher order SNP interactions in 
the absence of main effect. The approach considers the ratio of 
cases and controls for each SNP combination at different loci. 
It generates statistically significant genotype combinatorial 
associations in terms of rules based on cases and controls. 
Predicting class labels of test objects from these rules retains 
higher accuracy in genetic combinations that contribute to a 
disease. Despite the increase in accuracy, the approach will 
still reduce the false positive error by permutation testing 
under the null hypothesis. The results have been obtained on 
two simulated scenarios to identify complex associations 
between genotype and phenotype. 
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 In the first scenario, the approach is validated for 
both balanced and imbalanced datasets. Figure 2 shows the 
accuracy of AC over MDR, RF, SVM, NN and Naïve Bayes 
classifiers for the simulated scenario I with 400 samples of 
case-control ratios 1:1,1:2,1:4 and 1:6. On an average of 100 
datasets for each model, MDR performed well for all 6 models 
in 1:1 ratio. However, AC performed better when allele 
frequencies are 0.1 and 0.9 exhibiting interactions in the 
absence of main effect. On average, in 1:2 ratio, there is a rise 
of 13% of accuracy over other algorithms for model 3, 5 and 
6. It is observed that both for balanced and imbalanced data, 
AC is more accurate when the allele frequencies are 0.1 and 
0.9. The accuracy of AC for 1:4 ratio is almost 16% higher 
than other existing approaches. It is observed that the accuracy 
is slightly reduced by about 2% in model 2 where allele 
frequencies are equal. The accuracy of AC is much higher 
than MDR in 1:6 ratios of all 6 models. Accuracy of AC is 
about 50% higher than MDR when MAF values are 0.1 and 
0.25.  

 The results of the second scenario of simulation 
demonstrated that the AC performed well across a wide range 
of SNP-SNP interaction models. Figure 3 illustrates accuracy 
of AC over other approaches for 1: 1 ratio with MAF 0.2 and 
0.4. MDR predominantly outperformed AC and other 
approaches. However, AC is more accurate than other 
approaches by up to 10% for allele frequencies 0.2 and 0.8 
with heritability of 0.01. It also performed well when there is 
no genetic influence over the phenotype. MDR performed 
significantly better in balanced data compared to other 
methods when MAF is equal to 0.4. However, accuracy of AC 
improved up to 4% when heritability is 0.025. It also 
significantly performed better than other approaches when 

there is no genetic influence over the phenotype. Figure 4    
graphically represents accuracy of AC for 1:2 ratio of sample 
size 400 with MAF 0.2 and 0.4 respectively. For average MAF 
values of 0.2 and 0.4, the accuracy of AC is higher by up to 
14% and 16% respectively compared to MDR for heritability 
values of 0.01, 0.025, 0.05 and 0.1. It is also observed that, 
Naive Bayes’ algorithm performed significantly better than 
MDR. However, on average AC was more accurate than 
Naive Bayes’ for MAF values of 0.2 and 0.4 by up to 3% and 
5% respectively. AC had the same accuracy as MDR for 
heritability 0.2, 0.3 and 0.4 for both MAF values (0.2 and 0.4). 
Figure 5 illustrates accuracy of AC for 1:4 ratios with MAF 
0.2 and 0.4 respectively. AC predominantly outperformed in 
all 70 models compared with other existing approaches. These 
results demonstrate that the power of AC increases in 
imbalanced data with higher proportions of controls than 
cases. 

IV.    CONCLUSION 

In this paper, association based classification 
approach was implemented for detecting interactions in 
balanced and unbalanced data. The approach was evaluated 
for two locus interactions using simulated data. The approach 
performed significantly better than the existing approaches in 
imbalanced data. However, the experimental results showed 
only small improvement in accuracy for balanced data. Further 
studies will investigate the performance of AC over three-way 
to ten-way genotype interactions and how these contribute to 
associated phenotype. The approach will be further applied to 
real data to confirm the success rate of identifying the 
interactions between SNPs in high dimensional genome. 
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Further, the empirical power of the approach will be 
determined in the presence of genotyping error, missing data, 
phenocopy and genetic heterogeneity.  
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