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Abstract—Newtonian and Quemada blood viscosity models 
are implemented in order to simulate the rheological behavior of 
blood under pulsating flow conditions in a patient specific iliac 
bifurcation. The influence of the applied blood constitutive 
equations is monitored via the Wall Shear Stress (WSS) 
distribution, magnitude and oscillations, non-Newtonian 
importance factors, and viscosity values according to the shear 
rate. The distribution of WSS on the vascular wall follows a 
pattern which is independent of the chosen rheological model. On 
the other hand, the WSS magnitude and oscillations are directly 
related to the applied blood constitutive equations and the shear 
rate. It is concluded that the Newtonian approximation may be 
regarded satisfactory only in high shear and flow rates. 
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I.  INTRODUCTION  
Blood flow in the cardiovascular system induces forces and 

stresses on the walls of the vessels which are closely related to 
the onset and localization of various diseases. Regions where 
low and oscillatory wall shear stresses develop are susceptible 
to the formation of atherosclerotic lesions [1-3]. This behavior 
is attributed to the non-uniformity of the vascular wall 
permeability [4]. Nerem, Mosberg and Schwerin [5] have 
demonstrated that the vascular wall permeability is directly 
related to the amplitude of the oscillatory shear stresses. 
Moreover, Fry [6] conducted experiments which proved that if 
the wall shear stresses are raised to high values for a short time, 
the endothelial surface may be damaged irreversibly. 
Furthermore, there is evidence that oscillating shear stresses on 
the arterial wall are related to the development and rupture risk 
of aortic aneurysms [7, 8]. 

Computational Fluid Dynamics (CFD) is a powerful tool 
which is widely applied for the simulation of blood flow in the 
cardiovascular system due to its non-intrusive nature.  
Commonly, blood is considered as a Newtonian fluid and 
vessels are idealized representations of the actual geometries. 
However, these modeling approximations may produce 
misleading results. The Newtonian fluid approximation ignores 
that blood viscosity depends on hematocrit and flow rate. The 
raise of the hematocrit increases blood viscosity. Moreover, it 
has been demonstrated that at low flow rates blood viscosity 
may be increased remarkably [9]. Additionally, the geometry 
of vessels plays a decisive role in the development of the flow 
field and the stresses on the wall. It is documented in the 
literature that atherosclerotic lesions tend to localize in areas 
where the geometry is complicated, such as branches and 
bifurcations [10, 11]. 

The goal of the present study is to investigate the influence 
of the geometry complexities and the blood constitutive 
equations in the magnitude and oscillation of WSS in patient 
specific blood flow simulations. A flow pulse is imposed at the 

inlet of the parent vessel of a patient specific iliac bifurcation 
for a time period of 0.8s, which corresponds to normal 
breathing conditions. The applied blood viscosity models are 
the Newtonian and Quemada [12]. The computational 
experiments reveal that there are significant differences in the 
WSS values between the two models, albeit a consistent WSS 
distribution pattern is present regardless of the applied model. 
The differences are more important at low flow rates indicating 
that the Newtonian model should be applied sparingly in 
patient specific blood flow simulations. 

II. METHODS 

A. Geometry Reconstruction 
The original patient specific geometry is reconstructed from 

medical images in Digital Imaging and Communications in 
Medicine (DICOM) format via an in-house code [13]. Initially, 
the original medical imaging data are transformed into a 
triangulated surface in STereoLithography (STL) format by 
means of medical image visualization and slicing software. A 
multi-block structured grid that conforms to the triangulated 
surface is generated. Starting from the surface structured grid, 
the volume grid is generated in the interior of the domain. In 
the present study, a high quality, in terms of the elements 
skewness grid quality metric, multi-block structured grid was 
generated on an iliac bifurcation which was reconstructed from 
anonymous patient Computed Tomography (CT) data. The 
reconstructed geometry is depicted in Fig.1. 

 
Fig. 1. View of the reconstructured surface (a) and the structured mesh (b).  

B. Governing Equations 
The physical problem is governed by the Navier-Stokes 

equations 
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and the mass continuity equation 

 
S

d 0⋅ =� V S  (2) 

for three dimensional incompressible flow. In (1) and (2) 
[ ]Tu, v, w=V  is the velocity vector with u, v and w  

representing the velocity components in x, y and z  Cartesian 
coordinate respectively. Moreover, dS  is equal to d⋅n S , 
where n is the unit vector normal to surface dS . In (1), ,i j  
and k  are the unit vectors in x, y and z  direction respectively, 
p  is the pressure, ρ  is the density, Ω  is the volume of the 
domain, and ijτ  ( )i, j x, y, z=  are the elements of the shear 
stress tensor. 

The shear stresses ijτ  may be written in terms of the shear 
rate γ  as 

 ij ijτ μγ=  (3) 

where μ  is the molecular viscosity coefficient, which is 
constant in case of Newtonian flows and a function of the 
shear rate in non-Newtonian ones. 

The shear rate may be written in tensorial form as  

 T2= = ∇ + ∇� D V V  (4) 

where D  is the deformation tensor. Thus, (3) may also be 
written in the tensorial form 

 μ=� �  (5) 

where �  is the shear stress tensor. Following the principle of 
material objectivity, i.e. μ  must remain unchanged regardless 
of the frame of reference, the shear rate may be calculated by 

 ( )2
2tr=� D  (6) 

Thus, when performing three dimensional numerical 
simulations any constitutive equation for non-Newtonian fluids 
should first be written in the form of 

 ( )τ μ γ γ=  (7) 

and then it may be expressed in the tensorial form 
 ( )μ=� � �  (8). 

In the present study, the non-Newtonian model of Quemada 
[12] is used. In this model, the effective viscosity is calculated 
by the formula 

 ( )
2

0 c

F

c

k k /11
2 1 /

γ
μ μ φ

γ

−

∞
� �+� �= −� �
� �+
� �

�
�

�
 (9) 

where Fμ  is the viscosity of plasma, φ  is the hematocrit, and 

0k , k∞  and cγ  are model parameters.  

C. Boundary Conditions  
A time varying parabolic velocity profile is applied at the 

inlet of the parent vessel of the iliac bifurcation for a typical 
cardiac cycle of 0.8s, which corresponds to normal breathing 
conditions. In Fig. 2 the velocity at the inlet of the iliac artery is 
plotted versus time. The vessel walls are considered rigid tubes 
and the no-slip boundary condition at the walls is applied when 
solving the Navier-Stokes equations. 

 
Fig. 2. Velocity waveform at the inlet.  

At the bifurcation branches outlets, a predefined flow rate 
boundary condition is applied. At each time instance, the 
outflow rate of each branch is calculated as a fraction of the 
inflow based on the area of the outlet. 

D. Haemodynamic parameters 
In the Newtonian blood model the molecular viscosity 

coefficient remains constant. Its value in the performed 
numerical simulations is 34 10μ −

∞ = ⋅  Pa s⋅ . The density of 
blood is =1055ρ  3Kg/m .  

For the Quemada model, the value of the plasma viscosity 
Fμ  is 31.2 10 Pa s−⋅ ⋅  and the haematocrit is 0.45φ = . The 

values of the model parameters are 0k 4.33= , k 2.07∞ =  and 
1

c 1.88sγ −= , corresponding to the selected value of the 
haematocrit [12]. 

E. Numerical Modelling  
The mass continuity and Navier-Stokes equations are 

solved numerically using a parallel in-house CFD code [14, 
15]. The code employs the Semi- Implicit Method for Pressure 
Linked Equations (SIMPLE) algorithm of [16] in conjunction 
with a finite-volume method (FVM) on multi-block, 
collocated, body-fitted 3D grids, where grid non-orthogonality 
is taken into account. The Navier-Stokes equations are 
discretized using a first-order forward Euler scheme for the 
time dependent term, a third-order QUICK scheme for the 
convective term and a central difference scheme (CDS) of 
second-order for the diffusion (viscous) term, whereas the 
pressure term is treated as source [17]. The solution is 
converged when the residual of the momentum and mass 
continuity is 41 10−⋅ . 
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The flow solver is parallelized via a domain decomposition 
technique which is based on the additive Schwarz method. 
Communication between processes is accomplished through 
the Message Passing Interface (MPI) message passing system, 
due to its high communication performance and portability. 
Numerical simulations were performed on a High 
Performance Computing (HPC) Rocks Cluster.  

The WSS  acting on the arterial wall is calculated by 
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where tr  and tV  are the direction vector and the velocity 
vector parallel to the arterial wall respectively. 

In order to quantify the variation of the WSS on the arterial 
wall, the Area Averaged WSS ( )AAWSS  variable is used. It is 
calculated by 
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where wA  is the total vascular wall area, wn  is the total 
number of the computational nodes lying on the wall, and 

iwS  
is the area of the wall face i . 

The Area Averaged Shear Rate ( )AASR  is used as a 
measure of the average shear rate on the arterial wall interface. 
It is calculated by the formula 
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where 
i

�  is the shear rate at wall node i , calculated by (6). 

The divergence of the non-Newtonian applied model from 
the Newtonian ,in terms of blood viscosity, is quantified by the 
global non-Newtonian importance factor GI  [18] which is 
calculated by the formula 
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The total WSS exerted on a node of the arterial wall over 
the entire cardiac cycle is evaluated by the Time Averaged 
WSS ( )TAWSS  
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where WSS  is the magnitude of the instantaneous WSS 
vector, and T  is the total duration of the cardiac cycle. 

Similar to AAWSS , the TAS  variable is introduced as a 
means of determining a total shear load on the vascular wall for 
the entire cardiac cycle. Its value is calculated by 
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where iTAWSS  is the value of TAWSS  on wall node i . 
The Oscillating Shear Index (OSI) is used as a means of 

determining the amplitude of the oscillations of the WSS on the 
arterial wall [1]. It is calculated by 
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The governing equations (1) and (2) are numerically solved 
in dimensionless form. Velocities, spatial coordinates and time 
are normalized by the peak systole velocity max 0.108U = m/s, 
the diameter 39.4 10D −= ⋅ m of the inlet of the parent vessel 
and the characteristic time 2

0 max/ 8.7 10 st D U −= = ⋅
respectively. 

The Strouhal ( )Str  number is equal to 11.097 10−⋅ . For the 
Newtonian model the Reynolds ( )Re  number takes the value 
270. For the Quemada model, the process of transforming the 
governing equations to dimensionless leads to the introduction 
of the dimensionless characteristic number QuRe  [19], which is 
calculated by the formula 

 max
Qu

F

U DRe ρ
μ

=   (17) 

Based on the selected haemodynamic parameters, the value 
of QuRe  for the performed numerical experiments is 900. 

III. RESULTS AND DISCUSSION  
In Figs. 3 and 4 contour plots of the WSS on the arterial 

wall at peak systolic velocity for both models are presented. 
This characteristic time instance of the cardiac cycle is selected 
for demonstration purposes, since the velocity magnitude, and 
consequently the velocity gradients on the wall, obtain their 
maximum values. 

 
Fig. 3. WSS distribution on the arterial wall at peak systolic velocity. a) 

Newtonian, b) Quemada. Front view. 
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Fig. 4. WSS distribution on the arterial wall at peak systolic velocity. a) 

Newtonian, b) Quemada. Rear view. 

It can be deduced from the contour plots that, regardless of 
the applied model, there is a consistent pattern of WSS 
distribution on the wall. Stresses are greater in value at places 
where the flow accelerates significantly, such as the outlet of 
the small branch of the bifurcation, or the vessel geometry 
presents acute curvature and creases. Albeit the WSS 
distribution is similar among the applied models, the stresses 
values differ significantly. In Table I the maximum values of 
the WSS acting on the vascular wall at characteristic time 
instances distributed over the entire cardiac cycle are recorded. 

TABLE I.  MAXIMUM VALUES OF WSS  

t(s) 
 Maximum WSS (Pa) 

Newtonian Quemada 

0.050 0.379 0.434 

0.100 0.928 1.023 

0.150 2.186 2.365 

0.200 3.903 4.172 

0.250 5.013 5.319 

0.300 4.048 4.350 

0.350 1.666 1.862 

0.400 0.836 0.934 

0.450 0.239 0.281 

0.500 0.313 0.363 

0.550 0.380 0.435 

0.600 0.378 0.432 

0.650 0.378 0.433 

0.700 0.378 0.433 

0.750 0.378 0.433 

0.800 0.378 0.433 

 

The Quemada model presents the maximum WSS value on 
the arterial wall throughout the cardiac cycle. The AAWSS  
values, calculated by (11), provide an estimation of the WSS 
exerted on the entire wall surface. In Table II the values of 

AAWSS  for the same instances are recorded. In addition to the 
AAWSS  values, the difference in the calculated values 

between the applied models, weighted on the AAWSS  of the 
Quemada model, is recorded in Table II. Specifically, the 
weighted difference AAWSSΔ is calculated by 

 100Qu Newt

Qu

AAWSS AAWSS
AAWSS

AAWSS
Δ

−
= ⋅   (18) 

where QuAAWSS  and NewtAAWSS  are the AAWSS  values for 
the Quemada and Newtonian model respectively. 

TABLE II.  AAWSS VALUES  

t(s) 
AAWSS (Pa) �AAWSS 

(%) Newtonian Quemada 

0.050 0.219 0.285 30.35% 

0.100 0.592 0.700 18.19% 

0.150 1.403 1.579 12.55% 

0.200 2.496 2.749 10.15% 

0.250 3.153 3.450 9.40% 

0.300 2.496 2.747 10.06% 

0.350 0.864 0.986 14.12% 

0.400 0.385 0.461 19.74% 

0.450 0.114 0.129 13.34% 

0.500 0.155 0.215 38.57% 

0.550 0.211 0.279 32.17% 

0.600 0.206 0.272 32.10% 

0.650 0.206 0.272 31.97% 

0.700 0.206 0.272 32.09% 

0.750 0.207 0.272 31.55% 

0.800 0.207 0.273 31.64% 

 

It can be directly inferred that as the flow accelerates the 
difference in the values of AAWSS  is reduced, reaching its 
minimum at peak systole. On the other hand, as the flow 
decelerates the difference in AAWSS  values is magnified. This 
behavior may be attributed to the fact that at very low flow 
rates blood viscosity increases notably [9].  

In Table III the AASR  values along with the global non-
Newtonian importance factor GI , calculated by (12) and (13) 
respectively, are recorded. The values are computed for both 
applied models at the same time instances of the cardiac cycle. 
The GI values indicate, as anticipated, that at low flow rates the 
non-Newtonian behavior of blood is prominent, whereas it 
fades at high flow rates. The results are consistent with 
experimental studies which prove that at shear rates above 100

1s−  the Newtonian fluid approximation for human blood is 
sufficient [20]. The AASR  values predicted by the two models 
are similar throughout the simulation period. From the onset of 
the systolic phase up to the mid-diastolic phase the Quemada 
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model predicts a higher average shear rate on the vascular wall, 
whereas the opposite occurs for the remainder of the cardiac 
cycle. 

TABLE III.  IG AND AASR VALUES  

t(s) 
AASR (s-1) 

IG (%) 
Newtonian Quemada 

0.050 54.692 54.591 14.00% 

0.100 105.872 106.780 10.26% 

0.150 204.967 206.729 7.60% 

0.200 323.155 325.258 6.22% 

0.250 394.335 396.412 5.69% 

0.300 345.813 347.516 5.93% 

0.350 188.444 188.698 7.54% 

0.400 114.058 113.214 10.45% 

0.450 52.823 49.118 13.68% 

0.500 50.813 49.086 13.48% 

0.550 56.377 55.515 13.18% 

0.600 56.255 55.675 13.45% 

0.650 56.054 55.624 13.58% 

0.700 55.922 55.579 13.65% 

0.750 55.844 55.552 13.68% 

0.800 55.796 55.536 13.70% 

 

The total shear load acting on the arterial wall over the 
entire cardiac cycle is quantified by means of the TAWSS  
variable, which is computed by (14). In Figs. 5 and 6 contour 
plots of the TAWSS  on the vessel wall are drawn for both 
models. As previously observed for the WSS field, the 
distribution of TAWSS  on the arterial wall is similar for both 
applied blood rheological models. The distribution pattern may 
be attributed to the geometry of the vessel and the way it 
influences the flow field. On the other hand, the WSS 
magnitude is attributed to the flow rate applied at the inlet, and 
consequently the magnitude of velocity gradients on the wall, 
and the constitutive equations of blood. 

 
Fig. 5. TAWSS distribution on the arterial wall. a) Newtonian, b) Quemada. 

Front view. 

 

Fig. 6. TAWSS distribution on the arterial wall. a) Newtonian, b) Quemada. 
Rear view. 

In Table IV the values of the TAS  variable along with the 
maximum value of the TAWSS variable for both models are 
recorded. The percent difference in TAS  values between the 
two models, weighted on the TAS  value of the Quemada 
model, is 12.21 %. 

TABLE IV.  MAXIMUM VALUES OF TAWSS & TAS VALUES 

Maximum TAWSS (Pa)  TAS (Pa) 

Newtonian Quemada Newtonian Quemada 

1.364 1.479 0.978 1.114 

 

In Figs. 7 and 8 contour plots of the OSI index are drawn 
on the arterial wall for both the Newtonian and Quemada 
model. The OSI index, calculated by (16), is used as a measure 
of determining locations where the WSS values oscillate over a 
period of time The OSI value varies from 0 to 0.5. These 
values correspond to zero cyclic variation and 1800 change of 
the WSS direction respectively. The maximum value of the 
OSI index is 0.482  and 0.472  for the Newtonian and 
Quemada model respectively. Examining the contour plots of 
the index together with the contour plots of the TAWSS , it can 
be directly deduced that the oscillations of the WSS are 
maximum at locations where the respective value is minor.  

 
Fig. 7. OSI distribution on the arterial wall. a) Newtonian, b) Quemada. Front 

view.  
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Fig. 8. OSI distribution on the arterial wall. a) Newtonian, b) Quemada. Rear 
view. 

The regions of the arterial wall where the WSS are low and 
oscillatory have been documented to be more susceptible to the 
formation of atherosclerotic lesions [1-3] and more prone to the 
development of aneurysms [7, 8]. Comparison of the index 
value distribution between the two applied models leads to the 
conclusion that the Newtonian model over predicts areas where 
the WSS oscillates over time. 

IV. CONCLUSION 
The purpose of this work was to investigate the effect of 

blood rheological models on the magnitude, distribution and 
oscillation of WSS on the wall of a patient specific iliac 
bifurcation under pulsating flow conditions. The viscosity 
models applied were the Newtonian and Quemada in order to 
identify the limitations of the commonly used Newtonian fluid 
approximation in the context of blood flow simulations in the 
cardiovascular system. 

The numerical experiments indicate that the stresses 
magnitudes are distributed on the arterial wall in a similar way 
regardless of the applied blood constitutive equations. 
However, both their area averaged values and the values at 
respective locations differ. The difference is significant at low 
flow rates and diminishes at high flow rates, with the Quemada 
model presenting always the higher stress value. Specifically, 
at peak systole the average stress value of the Quemada model 
is only 9.40% higher, whereas at 0.5t =  the difference in 
values is 38.57%. The area averaged shear value difference 
integrated over the entire cardiac cycle is 12.21%. 

The non-Newtonian behavior of blood at low flow rates is 
verified by the values of the global non-Newtonian importance 
factors. At peak systole the average viscosity of blood for the 
Quemada model is 5.69% higher than the constant viscosity of 
the Newtonian model. The highest divergence in average 
viscosity values is observed at the onset of the cardiac cycle 
reaching the value of 13.70%. 

Oscillations of the WSS are maximized at locations where 
their magnitudes are low for both models. The Newtonian 
model forecasts a wider area of the arterial wall on which the 
shear stresses oscillate. 

Overall, it is concluded that the Newtonian fluid 
approximation may be considered sufficient only at high flow 

rates and, consequently, shear rates. At shear rates below the 
threshold of 100 1s−  the non-Newtonian behavior of blood 
cannot be ignored and the implementation of the Newtonian 
model may lead to misleading results.  

Accuracy of the simulations will be further enhanced with 
the introduction of the fluid structure interaction in the 
computations and the application of more physiologically 
realistic boundary conditions, which take into account the 
interaction with the upstream and downstream vasculature. In 
the future, simulation results will be compared to clinical data. 
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