
  

Abstract— Measurement of cognitive load using brain sig-
nals is an important area of research in human behavior and 
psychology. Recently, there have been attempts to use low cost, 
commercially available Electroencephalogram (EEG) devices 
for the analysis of the cognitive load. Due to the reduced num-
ber of leads, these low resolution devices pose major challenges 
in signal processing as well as in feature extraction. In this 
paper, we investigate the significant leads or channels that are 
useful for the analysis of the cognitive load. We use a standard 
matching test and n-back memory test imparting low and high 
cognitive loads respectively. The investigation is based on the 
analysis of variance (ANOVA) of Alpha and Theta frequency 
band signals for various combinations of leads. Comparisons 
have been done between the previously reported leads and 
those obtained using a few feature selection algorithms. Results 
indicate that for a given stimulus, though the significant leads 
are very much dependent on the subjects, the leads correspond-
ing to the left frontal lobe and right parieto-occipital lobe are in 
general most significant across majority of subjects for analysis 
of the cognitive load. 
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I. INTRODUCTION 
Cognitive load is a measure of the processing done using 

working memory [1] of the brain. The effectiveness of an 
activity is dependent on the amount of cognitive load expe-
rienced by a subject. Various fields of applications ranging 
from personalized learning to air-traffic monitoring, require 
monitoring the cognitive load in real time. The mental state 
changes due to the level of imparted cognitive load and the 
performance of a subject may drastically degrade if the load 
exceeds beyond a critical point [2]. Analysis of various phy-
siological signals to detect and analyze human mental states 
is an emerging and widely recognized technique. Physiolog-
ical measurements give more unbiased, reliable and accurate 
metrics than performance based indices. Basic cardiovascu-
lar measures like heart-rate is found to significantly increase 
with increase in attention and mental work load [3]. Similar-
ly changes in skin conductance levels are also found to be 
highly co-related with the one’s present mental condition 

[4]. 
Though the physiological measurements have good corre-

lation with the changes in mental state and cognitive load, it 
still remains the effect caused due to the brain activities, 
hence, serves as an indirect way of measurement. Obviously, 
if permitted, it is always desirable to analyze the brain sig-
nals directly as it is the root cause for the changes in physio-
logical/ cognitive signals. Several methods exists to analyze 
the brain signals namely, Electroencephalogram (EEG) [5], 
functional Magnetic Resonance Imaging (fMRI) [6], func-
tional Near Infrared Spectroscopy (fNIRS) [7] etc. The neu-
rophysiological changes in the brain, to a given stimuli, can 
be successfully used to differentiate between the human 
thinking processes triggered for different levels of effortful 
cognitive tasks. Among the various methods, EEG signal has 
the advantage of higher time-resolution and portability 
enabling a real-time analysis of the cognitive load in practic-
al scenarios. Moreover, low cost wireless EEG headsets 
productized by various companies made EEG modality par-
ticularly attractive. Since the low cost EEG devices come 
with lower number of EEG leads/ channels (i.e. low spatial 
resolution) many of the standard preprocessing steps like 
Independent Component Analysis, Common Spatial Pattern 
Filtering etc. cannot be performed efficiently to enhance the 
signal quality. Hence, finding out the most sensitive EEG 
leads positions plays a crucial part in addressing subject 
variability and artifact removals to enhance the measurement 
quality. This motivates us to carry out our research showing 
the importance of lead/channel selections to work with low 
resolution EEG devices.      

The organization of this paper is as follows. Section II 
presents the literature review on cognitive load analysis 
using various channels along with few feature selection al-
gorithms. Section III presents experimental setup and details 
of the tool used for EEG data capture. The detailed metho-
dology for the analysis of the channels and features are giv-
en in Section IV. Results are presented and discussed in 
Section V followed by conclusion in section VI. 
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II. LITERATURE REVIEW 
The cortex or cerebrum region is the largest part of human 

brain. This region is associated with different brain functions 
like critical thinking, perception, decision making etc. Dif-
ferent lobes of cerebral cortex are responsible for different 
brain functions e.g. occipital lobe is associated with visual 
perception [8], temporal lobe is associated with perception 
and recognition of auditory stimuli [9] etc. A list of litera-
tures suggest that cognitive load variations for  tasks having 
different difficulty levels  are most clearly visible if we con-
sider frontal and parietal lobes [10], more precisely the theta 
wave variations at frontal lobe and alpha wave variation in 
parietal lobe [11, 12]. In general it has been widely reported 
that alpha power decreases with increased cognitive load. 
This effect is most prominent at central parietal (Pz) loca-
tion, whereas theta power increases with increased cognitive 
load and is most prominent at central frontal (Fz) location. 
Attempts have been done to use low-resolution EEG head-
sets (where Pz and Fz locations are not available) to detect 
cognitive loads [13, 14] as well. For example, the work of 
Anderson et al. [15], which combined both theta and alpha 
power in an intelligent way to come up with a novel feature, 
also looks very promising. However, no systematic study to 
select proper EEG lead positions has been found. It is a well-
known fact that EEG signals are person specific to some 
extent and to get highest accuracy specific EEG leads need 
to be identified. An alternative solution would be to use data 
driven spatial filters to address this subject variability [16]. 
This method might not be optimal for low resolution system 
like Emotiv as the leads are separated far apart which even-
tually eliminates existence of true neighboring leads to help 
the spatial filters to work efficiently. The only option left is 
to directly find out the best lead positions among the given 
sets. 

Channel selection for cognitive load analysis is studied by 
Tian et al. [17] using two types of load with three subjects. 
They have proposed mutual information based channel se-
lection. Findings indicate that the selected channels vary 
from subject to subject, however a global selection of 10 
leads provide satisfactory classification accuracy. However, 
the findings are quite different from the one proposed by 
previous psychological studies by Russel et al. [18]. There 
have been few works on channel selection [19] in the area of 
Brain Computer Interface (BCI). Moreover, the feature and 
lead selection is highly dependent on the task being per-
formed as they directly relate with the activated lobes of the 
brain [20]. In addition to this, most of the previous works on 
lead selection is based on high resolution EEG devices with 
32 or more leads. 

Feature selection is a widely researched topic in various 
applications. In the area of people identification, connection-
ist system is used for feature selection algorithm along with 
Adaptive Neural Network (ANN) classifier [21]. Similarly, 
in the area of clinical document classification, MIC based 
feature selection algorithm is used by Chen et al. [22]. In the 
current paper, we have used the concepts of these feature 

selection algorithms and proposed two methods of channel 
selection algorithm for EEG. Moreover, we have compared 
and analyzed few of the existing lead selection methods 
using Alpha and Theta sub bands. The primary focus of this 
paper is on lead selection while using low resolution 14-lead 
EEG device. The lead selection and channel selection are 
interchangeably used and they mean the same. 

III. EXPERIMENTAL SETUP 
We have used a 14-channel low cost EEG device named 

Emotiv1. The data capture has been done using a Python 
based in-house EEG capture tool which presents the cogni-
tive tasks to the subject as well as collects EEG data and trial 
video data synchronously. In this paper, the raw EEG data 
are analyzed using multiple sub-sets of the 14 sensor chan-
nels for specific frequency bands. These subsets include the 
following: 

• All 14 Channels (shown in Fig 1.a) 
• Four channels on left frontal lobe (AF3, F7, F3, FC5) 
• Four channels on right frontal lobe (AF4, F8, F4, FC6) 
• Frontal and Parietal lobe as reported in [3, 23, 11, 12] 
• Channels suggested by psychological literature [18] 
• Channels and bands derived using a modified Adaptive 

Neural Network (ANN) feature selection (FS) algorithm 
[24] 

• Channels and bands derived using Maximal Information 
Coefficient (MIC) algorithm [25] 

Further to that, this section details the stimulus used for 
the experiments, profiles of the subjects who participated in 
the experiments and the tool used for the data collection. The 
placement of the leads for 14-channel Emotiv EEG device is 
shown in Fig. 1(a). The device follows standard 10-20 elec-
trode system for channel locations. The CMS and DRL, 
placed in the location of P3 and P4, do not generate any 
signal and used for reference only. Remaining 14 leads 
shown in the figure generate the EEG signals at 128 Hz 
sampling rate. The device has an in-built notch filter at pow-
er line frequency. 

A. Stimulus Design 
Two elementary cognitive tasks are used for low and high 

mental workload on the subjects. A “Finding number” task 
is used for low load condition and “n-back memory” task is 
used for high low condition [26]. The cognitive index as 
presented in [15] is used to measure the work load imparted 
on the users while doing a particular task. For example, two 
sets of experiments as shown in Fig. 1(b), were designed 
pertaining low and high cognitive work load on participants. 
Each experiment consisted of 10 trials. Each trial, having 10 
slides each, containing a number between 0-9. Each slide 
was presented for a duration of 1.6 seconds. 

 1  www.emotiv.com 
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               (a)                                              (b)         
Fig. 1. (a) Lead locations for 14-channel Emotiv EEG device, (b) Stimulus 

used during the EEG experiments 

The trials were separated by an inter-trial interval of 5 
seconds. The participants were asked to relax during that 
period. This period is treated as the baseline period.  

For low load trials, termed as “Finding number”, users 
were presented a set of numbers one after another. They 
were asked to respond by clicking the left mouse button if a 
pre-defined number (say 5) appeared on the screen as de-
picted in Fig 1(b). 

For high load trials, termed as “3-back memory”, users 
needed to remember the numbers presented in each slide. 
They were instructed to respond if a number matched with 
the number presented 3 slides back (as shown in Fig. 1(b)). 

Two sets of low and high load trial sessions were con-
ducted for each user. 
B. Participants 

A group of 10 participants were selected in the age group 
of 25-30 years. All of them were right-handed male engi-
neers working in a research lab. These ensures minimum 
variance in level of expertise and brain lateralization across 
all the participants. 

 Each participant completed both the sessions of low and 
high cognitive load trials with a short break of 2 minutes 
between each trials. Users were asked to relax during that 
period. For 5 subjects high load tasks were given first and 
then the low load task. For remaining 5 participants the order 
of tasks given were reversed. This was done to minimize the 
learning effect. 

For the EEG data capture, we have taken consent of the 
participants along with the approval from the ethics commit-
tee of our company. 

C. Data Collection 
We have used an in-house python-based data capture tool 

for this purpose. The tool enables us to present the stimulus 
as well as collect the raw EEG data, synchronized with tri-
als. 

It also introduces some markers in the raw EEG data like 
EEG start and end times, Stimulus start and end time, base-
line start time, User response time and eye-blink events us-
ing Emotiv Software Development Kit (SDK). Later, the 
artifacts due to the eye blinks and muscle motion are re-
moved using the filtering method as stated in [26].The block 
diagram of the capture tool is shown in Fig. 2 where syn-
chronous EEG and Galvanic Skin Response (GSR) are re-

coded with event markers (i.e. eye blink event etc.). Please 
note that the GSR data analysis is not presented as it is out of 
scope. 

 

 
Fig. 2. Block Diagram of the Setup for EEG Capture 

IV. METHODOLOGY 
The detailed preprocessing of raw EEG signal and differ-

ent methodologies adopted for channel selection are pre-
sented in this section. 

A. Signal Analysis 
The flow of the signal processing steps is depicted in Fig. 

3. Here 14 time-series EEG signals (one from each sensor) 
were first segmented into individual trials. Next these trials 
were subdivided into inter-trial baseline and trial simulation 
as explained in [15]. This division was done based on the 
predefined marker data introduced by the data capture tool 
while acquiring the data. The segment corresponding to a 
trial is extracted as a fixed size window of 2.5 seconds 
around the user response time. This ensures an equal length 
trial epoch of 5 seconds for all users. The baseline epoch is 
derived from the 5 second inter-trail interval during which 
the subjects relax. 

Apart from the above, an analysis of continuous 5 seconds 
trial windows with 50% overlapping is also performed. In 
this case the baseline is taken from the last relax time before 
the trial window. 

 
Fig. 3. Signal processing flowchart 
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Raw EEG data is highly contaminated by eye-blinks. We 
have followed the process explained by Berka et al. [26] to 
remove the contaminations due to eye-blink. For detection of 
eye-blinks, we have relied on the SDK supplied by Emotiv. 
The trial epochs and the baseline data were then transformed 
using S-transform. S-transform decomposes a non-stationary 
signal in time-frequency domain for better precision. Next 
the alpha and theta band mean frequencies and powers at 
mean frequencies were calculated for all the selected leads 
as mentioned in Sec III. These values were then used to 
derive the total cognitive load as explained in [15]. Finally, 
we averaged the cognitive loads from all the selected chan-
nels to get the single measurement of cognitive load. The 
mean frequency of alpha, theta band and the total cognitive 
load were calculated using the formula given by Anderson 
[15]. 

The mean frequency is computed by (1). 
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where ω is the frequency band in question, n is the number 
of frequency bins in ω , if is the frequency at bin i and iI is 
the energy density of ω at frequency bin i . 

The mean frequencies for both trial and baseline epochs 
were calculated. Next the frequency shift between them were 
calculated. The total cognitive load )(tL was calculated us-
ing a combination of power and frequency changes for both 
alpha (�) and theta (�) band considering all the selected 
channels for trail t  as given in (2) [9]: 

( ) ( ) ( ) ( )θθαα tttt fffftL Δ−Δ=)(                  (2) 

Now, we compute L  using three different ways for chan-
nel selection as depicted in Fig 3. First, we considered all the 
14 channels.  Second, we manually selected leads based on 
the literature studies. This suggests that for specific brain 
functions like problem solving, visual attention tasks etc, 
theta waves from frontal lobe (Fz location) and alpha waves 
from parietal lobe (Pz location) act as the most distinguish-
ing feature. We have tried to find out if these are most dis-
criminative features for Emotiv as well. Since Emotiv does 
not have any sensor at Fz or Pz locations, we selected P7 and 
P8 from parietal lobe and F3 and F4 from frontal lobe as 
they seem to be the closest representative of Pz and Fz. We 
calculated total cognitive load using (2) considering alpha 
and theta waves from these channels only. Finally averaging 
the values obtained from these channels gives a single meas-
ure of cognitive load. Similarly, left four channels of frontal 
lobe are manually selected to measure the cognitive load in 
the above manner. 

Next we use couple of feature selection algorithms to de-
rive the significant channels for both alpha and theta waves. 
The total cognitive load was again calculated using (2) but 
only for the leads selected by the feature selection algo-
rithms. 

B. Channel Selection 
Apart from channels found in the prior literature, we have 

performed channel selection using two methods – connec-
tionist framework based on ANN and MIC using support 
vector machine (SVM). The S-transform [15] of each epoch 
of EEG signal is a time-frequency data representing the fre-
quency response at each instance of time. The energy values 
(E) and the mean frequency (f) for each band are computed 
for each lead at every time instance of the epoch. The maxi-
mum, minimum and average values of E in a given epoch 
are termed as il

avg
ilil EEE ,,

min
,

max ,,  respectively where, 

},{ θα∈i frequency bands and 141 ≤≤ l  denotes the 14 leads 
of the Emotiv EEG device. Similarly, the maximum, mini-
mum and average values of mean frequencies in a given 
epoch are termed as il

avg
ilil fff ,,

min
,

max ,,  respectively. The compo-

site feature vector is derived from the energy values and the 
mean frequency of the � and � bands as given in (3). 
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The feature vector 128ℜ∈F  consists of 6x2x14 = 128 
dimension features. These features are then used for the 
subsequent lead selection whose objective is to find the set 
of leads for � and � bands that maximizes the separation of 
the computed cognitive load L as in (2) for the previously 
mentioned two types of tasks. 

 
1) Connectionist Framework based channel selection 

The features in (3) are used to train a connectionist 
framework based ANN [24] having 128 input nodes and two 
output nodes and a hidden layer. The number of nodes for 
the hidden layer is experimentally chosen to be 25 using the 
method suggested by Hagiwara [27]. Once the ANN is 
trained then the selection layer holds a set of weights ( kW ) 
those are proportional to the importance of the features in 
discriminating the two types of tasks. Though the selection 
layer is an integral part of the ANN structure, it just holds a 
linear scale factor for the input features. This motivated the 
authors to derive the lead selection from the weights ( kW ) of 
the features.  

 The initial lead assignments for each of the six types of 
features for all the C channels/ leads are done using (4) to 
(9). If the weights for the corresponding feature values are 
greater than a predefined threshold �, then the corresponding 
lead for the feature is set to 1 else it is set to 0. 
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In case of Emotiv EEG device, there are 14 leads, hence C 
is 14. For the present experiments, the threshold � is selected 
as 0.3. After the initial assignments of the leads for each 
feature we need to combine them to arrive at the selected 
leads for the � and � bands. The method for the combination 
is given in (10) to (12). Initially, the intersection is taken for 
the leads corresponding to ilE ,

max
, il

avgE ,  and  ilE ,
min , il

avgE , . Later 

the union is done for the above. Similar processing is done 
for the mean frequency (f). Finally, the union of the leads is 
done for the leads identified by energy and mean frequency 
in (12). 
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where, U denotes the union of sets and I denotes the inter-
section of sets.  

 The computation of the cognitive load is done using (2) 
and averaged over the selected leads or channels. 

 
2) MIC based channel selection 

The feature vector of 128 dimension derived in (3) is fed 
into an MIC (Maximal Information Coefficient) based fea-
ture selection algorithm. MIC is a statistical tool [25] for 
measuring the inter-relationship between a pair of dataset 
based on the concept of binning and grid formation. For 
every data pair (p, q), if M represents the mutual information  
for a grid G, then MIC of a dataset X of sample size n and 
grid size (p, q) less than nb  is given by (13). 

{ }qpbqp XMXMIC
n ,, )(max)( <=    where 6.0nbn =    (13) 

For different distributions of G , )(XM  is given by (14). 
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Using this MIC value, a gain factor of the thk feature is 
defined by (15) [28]. 
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where S  represents the stiffness factor of the sigmoid 
function which controls the suppression and elevation of the 
importance of a feature. Therefore a judicious optimization 
of S  is essential for proper evaluation of the gain factor of 
individual feature. This is realized by using SVM as an op-
timization function. 

To run the SVM, the induced feature vector ( SV ), given 
by (16), is randomized to generate a number of dataset for 
manifold validation of the SVM classifier and thus choosing 
the optimum one from a series of gain factors. The randomi-
zation is performed using the standard ‘randperm’ function 
of Matlab and the typical number ( g ) of randomized dataset 
chosen for the experiment is 4. 

FWV SS *=                                  (16) 

Where SW represents the gain factor vector corresponding 
to stiffness value S and SV  is the final induced feature vec-
tor. From the accuracy of SVM classifier a Decision Para-
meter SDP |  is generated as (17). 
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Here )(IRS represents the SVM accuracy for a particular 
S and I .  

The final stiffness factor S and thus the corresponding 
gain factor vector W can be determined as the gain factor 
vector associated with the maximum Decision Parameter 
value as given in (18). 

))|max(( SS DPSWW ≡=                  (18) 

Once the gain factor vector W is determined, the channel 
selection can be done in a similar fashion as explained in the 
previous section. Here the elements of this gain factor vector 
W are similar as explained in the Connectionist framework 
based channel selection section. 

C. Statistical Analysis 
We have used one-way ANOVA to test the significant dif-

ferences between cognitive loads for low and high load 
tasks. One-way ANOVA tests the null hypothesis that both 
the groups are derived from same population and hence there 
are no significant differences between the class means.  If 
the F value obtained is greater than 1, then it indicates that 
there is significant difference between the class means. Next 
the results are tested for statistical significance or p value. 
Smaller the p-value, lesser is the chance that the test classes 
belong to the same group. By setting p = 0.01, the critical F 
value can be determined from a standard lookup table2. F 
value greater than F-critical denotes rejection of null hypo-
thesis. Since, cognitive load directly depends on the fre-
quency bands of the various EEG channels, the ANOVA 
analysis varies depending on the subset of channels are cho-
sen. Thus there is a need to understand a systematic ap-
proach to do the selection. Moreover, there is a need to in-
vestigate whether the selection is subject and/or session 
dependent and repeatable. These are captured and explained 
in the next section. 

V. RESULTS AND DISCUSSIONS 
In this section we present a comparative study of various 

channel selection methods followed by an analysis of the 
channels responsible for the cognitive load information. 

A. Comparison of Various Channel Selection Methods 
We present the results obtained by the one-way ANOVA 

analysis using various approaches of lead selection for 10 
subjects undertaking two types of tasks as described in Sec-
tion III. Table I shows F-value and p-value obtained using 
ANOVA analysis for the following lead combinations: 

 2  http://www.socr.ucla.edu/applets.dir/f_table.html 
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• All channels: Taking all 14 channels into account. 
• Left 4 channels (Left 4): Frontal lobe of left hemisphere 

i.e., leads AF3, F7, F3 and FC5. We have also experi-
mented with the frontal lobe of right hemisphere (AF4, 
F8, F4 and FC6) however, they didn’t produce mentiona-
ble results and hence not reported in this paper. The rea-
son behind this may be that the left hemisphere is respon-
sible for problem solving, language processing, logical 
thinking, planning etc. [29]. 

• Frontal and Parietal lobe (FP Lobe): Based on the finding 
in [11, 12], the cognitive load is calculated taking Theta 
from leads of frontal lobe (F3, F4) and alpha from leads 
of parietal lobe (P7, P8). 

• Leads from the psychological literature (Phy 7): As re-
ported in [18], there are 7 leads (Cz, P3, P4, Pz, O2, PO4, 
F7) which are most important for cognitive load. These 
are used in the experiments by Tian et al. [17] with a 32 
lead EEG device. The 14-lead Emotiv EEG device does 
not have all the 7 leads. In Emotiv, the Cz, Pz are not 
available; P7 is used instead of P3; P8 is used instead of 
P4 and PO4. Hence we have taken P7, P8, O2 and F7 for 
our experiment. 

• Connectionist Framework based channel selection (ANN 
CS): The leads are selected using the weights derived 
from the connectionist framework of ANN as given in 
section IV.B.1. 

• MIC based channel selection (MIC CS): The leads are 
selected using the weights derived from the MIC based 
approach as given in section IV.B.2. 

• Mutual Information based channel selection ([17]): As 
reported by Tian et al. [17] there are global 7 leads which 
gave good results for 3 subjects using a 32 lead EEG de-
vice. Among these, we have used the 6 leads (O1, F8, F7, 
FC5, FC6, AF3) which are available in Emotiv. 

In Table I, the green colored entries correspond to the best 
F, p and the orange colors correspond the second best for 
each subject. It can be seen that the “MIC CS” gives best 
results for 4 subjects, “Left 4” gives best results for 4 sub-
jects and “Phy 7” gives best results for 2 subjects. 

The output of ANOVA analysis for continuous 5 seconds 
window with 50% overlap is shown in Table II. The green 
colored entries correspond to the best F, p and the orange 
colors correspond the second best for each subject. It can be 
seen that for few subjects there are multiple green entries as 
the F values are very close to each other. The values of F 
have noticeably increased compared to the one in Table I. 
This indicates that a subject is continuously experiencing 
more cognitive load for the “3-back memory” task compared 
to the “Finding number” task. Hence the continuous window 
analysis is more suitable to find the cognitive load expe-
rienced by a subject for an unknown task. It can also be seen 
that the “MIC CS” gives best results for 7 subjects. Hence 
this channel selection algorithm performs the best amongst 
the compared ones. 

 

TABLE I.  RESULTS OF ANNOVA FOR DIFFERENT CHANNEL 
SELECTION APPROACHES – 5 SEC WINDOW AROUND USER RESPONSE (GREEN 

COLORED ENTRIES CORRESPOND TO THE BEST F, P AND THE ORANGE 
COLORS CORRESPOND THE SECOND BEST FOR EACH SUBJECT) 

 
 

TABLE II.  RESULTS OF ANNOVA FOR DIFFERENT CHANNEL 
SELECTION APPROACHES – CONTINUOUS 5 SEC WINDOW WITH 50% 

OVERLAP(GREEN COLORED ENTRIES CORRESPOND TO THE BEST F, P AND 
THE ORANGE COLORS CORRESPOND THE SECOND BEST FOR EACH SUBJECT) 

 
 
In order to understand the repeatability of the outcome, 

another round of experiments are performed on 4 subjects 
out of the 7 subjects for which the F,p are marked as green 
in “MIC CS” column in Table II. For this the previously 
selected channels for the corresponding subjects are used. 
Results indicate that the trend is similar and the deviation of 
F is within 5% with p < 0.005. 

Next we consider the lead combinations for each subject 
corresponding to the highest F values and perform the analy-
sis in the remaining section. Fig. 4 gives a pictorial represen-
tation of total cognitive load as per equation (2) for all 10 
subjects (S1 to S10) considering the leads having maximum 
F-value with p < 0.005, in the ANOVA analysis. The red 
dots represent the cognitive load corresponding to low load 
task (Finding number) and blue dots correspond to cognitive 
load for high trials (3-back memory test). The figure clearly 
indicates a difference in average levels for two tasks for 
almost all subjects. 
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Fig. 4. Total cognitive load (L) for all subjects as per equation (2) 

B. Analysis of Discrimination Power for the channels 
The selected channels obtained from one-way ANOVA 

analysis can further be analyzed using the color map to de-
rive insights on their discrimination power. The binary re-
presentation of selected channels using Alpha activation 
corresponding to the maximum F value of ANOVA analysis 
in Table I is shown in Table III, where “S” indicates the 
subjects from 1 to 10 for 10 rows and columns indicate the 
leads (1 means selected). Similar set of selected channels are 
derived for Theta activation. 

If we consider the entries in the Table III as entries of a 
matrix ija , then we define the channel activation index as 

given by (19). 

14j1   ,1 ≤≤=
�

=

N

a
C

N

i
ij

j
                     (19) 

where, N is the number of subjects (in our experiment, 
N=10) and j is the channel index. 

TABLE III.  CHANNEL SELECTION FOR ALPHA ACTIVATION 
CORRESPONDING TO MAXIMUM F-VALUE 

 
 
The jC  is used to plot the channel intensity color map for 

Alpha activation in Fig. 5(a). Red indicates highest and blue 
indicates lowest discrimination power respectively. Similar-
ly, the activation index for Theta band is depicted in Fig. 
5(b). Both the figures depict a strong discrimination power 
for left frontal lobe and partially for parieto-occipital lobe of 
right hemisphere. 

      
                  (a)                                              (b) 
Fig. 5. Channel Discrimination Map for (a) Alpha and (b) Theta Activation. 
 

Next we perform similar analysis by deriving weighted 
channel activation index F

jC using F-value as the weighing 

factor, shown in (20). The max
iF is the maximum F value for 

the subject i in Table II. It is to be noted that for each sub-
ject, the selected leads in the rows of the channel selection 
matrix in Table III, correspond to maximum F values of 
Table II. 
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j                  (20) 

The F
jC  is used to plot the channel intensity color map for 

Alpha and Theta activation in Fig. 6(a) and Fig. 6(b) respec-
tively. 

    
                   (a)                                             (b) 

Fig. 6. Channel Discrimination Map using ANOVA F-value for (a) Alpha 
and (b) Theta Activation. 

 
In this case also, a strong discrimination map is observed 

for left frontal lobe and partially for parieto-occipital lobe of 
right hemisphere. The strength of the map provides the in-
formation about the importance of the channels in the cogni-
tive load measurement using a low resolution 14-lead Emo-
tiv EEG device.  

We conclude from the results that for few subjects the 
channels of the left hemisphere perform the best whereas for 
other subjects the channels and bands selected by the feature 
selection algorithm work well. It is seen that the prior arts 
findings (majority of those are reported on high resolution 
systems) do not comply with the current scenario especially 
for a low resolution EEG device. It is quite a unique finding 
in this paper. Hence this approach for channel or lead selec-
tion can be successfully used for different scenarios of hu-
man behavior understanding using portable low cost head 
gear devices like the one provided by Emotiv. Moreover, the 
findings of the lead selection information for a specific sub-
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ject can be further used to position a single lead EEG device 
namely Neurosky3 for the improved performance. However, 
the analysis on the Neurosky data is out of the scope of this 
paper. 

VI. CONCLUSIONS 
From the detailed analysis in the paper, it can be inferred 

that the choice of channel plays a pivotal role in determining 
the cognitive load experienced by subjects while executing a 
particular task. Clear separation between different levels of 
cognitive loads can be achieved from the optimum selection 
of channel combinations. Though the present analysis fo-
cused on two level classifications, it can further be extended 
to multilevel segregation as well. It is also evident from the 
above discussion that lead activation is very specific to the 
type of the task executed and it is very much subject depen-
dent. Therefore, it is advisable to select the subject specific 
lead combination for achieving a better accuracy. The conti-
nuous window analysis with 50% overlapping provides 
much better result compared to the analysis around subjects’ 
responses. The MIC based channel selection algorithm per-
forms best for 70% of the subjects. The left frontal and right 
parieto-occipital channels demonstrate the most discrimina-
tive power, for the selected two types of tasks, as depicted in 
the color map representations. As a future scope we plan to 
investigate the most significant leads indicative of various 
cognitive functions, which would enable automatic channel 
selection for a given task. 
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