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Abstract—The skill of a successful operation requires a 
thorough understanding on the particular organs, perhaps de 
facto surgery is complex nowadays. Therefore, surgical simulator 
has become an alternative demanding tool among the surgeons to 
practice and conducting pre-operation planning. Due to the ease 
of implementation of Mass Spring Model (MSM), the context of 
MSM has been extended to real-time invasive surgical simulator. 
However, the remaining drawback of MSM is the selection of 
parameter—stiffness. In this research, the fuzzy knowledge 
based system is introduced into the MSM. We present an 
improved MSM to simulate the liver deformation for surgery 
simulation. The underlying MSM is redesigned where the 
parameters are determined by using knowledge-based fuzzy 
logic. Comparison between different fuzzy approaches such as 
Interval Type-2 Fuzzy Sets (IT2), Mamdani and Sugeno are 
made. Among the three fuzzy approaches, IT2 has the highest 
similarity with the benchmark model. The stiffness values 
estimated by fuzzy approaches are in very good agreement with 
the benchmark result as each of the respective fuzzy approach 
graphs share the similar trend of displacement and velocity with 
the benchmark model. 

Keywords— biomedical data modelling, knowledge utilization, 
spring parameters, mass spring model, interval type-2 FIS, 
mamdani FIS, sugeno FIS 

I. INTRODUCTION  
The skill of a successful operation requires a thorough 

understanding on the particular organs, including conditions 
and vessel distribution. Perhaps de facto surgery is complex 
nowadays, thus for a novice surgeon to practice on real patient 
is highly endangered. Therefore, surgical simulator has 
become an alternative demanding tool which offers strategies 
to reduce medical errors by learning and conducting pre-
operation planning in virtual environment. However, the 
uniqueness of different patients, promote difference physical 
behaviours in soft tissue deformation. Hence, the selection of 
deformable model is essential as it is the core part of a surgical 
simulator. In order to design a state-of-the-art surgical 
simulator, one has to achieve both realistic and real-time 
simulation. 

The Mass Spring Model (MSM) is the most commonly 
used deformable model. MSM is a discrete model which 

avoids initialization. It features high refreshing frame rates, 
which increase the efficiency. Therefore, MSM is more 
convenient in manipulating a deformable object in terms of 
real-time. The only remaining challenge of the MSM is the 
selection of parameters [19]. The determination parameters of 
MSM need improvement because the imprecise selection of 
spring parameters might cause tendency in the realism of 
deformation. The determination of spring parameter is 
strenuous as the parameters do not have direct relationship 
with the elastic constants-Young’s Modulus and Poisson’s 
ratio [4]. In the work of Besozzi et al. [4], suggested that 
spring constants are dependent on surgeons’ prior knowledge. 

In this research, the fuzzy knowledge based system is 
introduced into the MSM. We present an improved MSM to 
simulate the liver deformation for surgery simulation. The 
underlying MSM is redesigned where the parameters are 
determined by using knowledge-based fuzzy logic. The 
surgeon’s prior knowledge and clinical data obtained from 
FibroScan® are the sources to be implemented in the system. 
Comparison between different fuzzy approaches such as 
Interval Type-2 Fuzzy Sets (IT2 FS), Mamdani and Sugeno 
are made. We investigated the respective suitability in terms 
of accuracy by examining the graph similarity of the 
respective fuzzy approaches with the benchmark model 
abstracted from Basafa and Farahmand [3]. 

II. PREVIOUS WORKS 
The first surgical simulator was introduced by Robert Mann 

in the 60’, where a rehabilitation application was developed to 
allow the medical surgeon to perform several surgical 
approaches for a given orthopaedic problem [10]. However, 
throughout the years, there is a remaining challenge in 
designing a state-of-the-art surgical simulator; as the ability to 
obtain both realistic and real-time simulation is a very difficult 
task. This is because the kernel portion of the surgical 
simulator—deformable model, by itself, the computational 
time is opposed to its operation.  

Aforementioned, MSM is highly efficient, but inaccurate 
due to the selection of spring parameters. Thus, several 
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approaches have been done in recent development in order to 
increase the accuracy of the simulation. In the past research, 
MSM has existed for more than two decades across multiple 
applications. For instance, cloth simulation [15,16], hair 
simulation [2], deformation of gallbladder [7] and soft tissue 
deformation [6]. Results from these research show efficiency 
in real-time interactive speed yet the accuracy and realism are 
doubted due to the selection of parameters [10,21,23]. 

The improvement of the conventional MSM could be broke 
into two branches: mathematical model [1,13,18,22] and 
optimization methods [5,6,8]. These approaches have shown 
significant improvement in terms of computation efficiency. 
However realism remains an issue. This is because most of the 
proposed models are limited to certain mesh topologies. 
Moreover, the specifications of spring constraints are not 
straightforward. Thus, there is an urge to improve the 
determination of MSM in order to simulation the soft tissue 
deformation realistically. 

Concurrently, fuzzy approaches have been widely expanded 
and several fuzzy control strategies have been developed 
based on different classical control methods, such as PID-
fuzzy control [9], modelling of stress-strain relationship of 
concrete in compression [17], sliding-mode fuzzy control [21], 
neural fuzzy control, adaptor fuzzy control [11] and phase-
plan mapping fuzzy control [12]. The uncertainty which exists 
in fuzzy logic allows the system to cope with imperfect input 
and adapt as the situation changes. The fuzzy algorithm 
“inform” the machine how to control the system instead of 
learning by observing the actions of a human operator. The 
main recipe in fuzzy approaches is the availability of 
knowledge which consists of a specific domain being a field 
or area of expertise. Therefore, the generally well-structured 
domain could reduce the complication of calculations. For 
instance, the work of Pawlus et al. [14], shows that the fuzzy 
model’s output could be adjusted to improve the model’s 
fidelity without complicated calculations. We thus could 
implement the fuzzy approaches into MSM in order to sort the 
selection of parameters based on the available liver stiffness 
data obtained from FibroScan®. 

III. METHODOLOGY 
In this study, the Fuzzy Logic Toolbox and Generalized 

Fuzzy System (GFS) are implemented in MATLAB r2014a to 
model the Fuzzy Inference System (FIS). Three types of fuzzy 
approaches are designed to obtain the stiffness coefficient of 
the Mass Spring Model. The GFS is an open source toolbox 
which is developed for visualizing fuzzification using all types 
of fuzzy sets. It could be reached at 
http://sourceforge.net/projects/gfs. The liver data are obtained 
from http://gforge.inria.fr/frs/?group_id=690. 

A. Mass Spring Model (MSM) 
The human liver 3D modelling is based on the MSM. The 

liver is modelled as a collection of mass points linked by three 

different springs such as structural spring, shear spring and 
flexion spring.  

The springs linking each mass points exert forces on 
neighbouring points when a mass point is displaced from its 
rest position. The governed MSM equation is derived by using 
Newton’s 2nd Law of Motion, NF and Hooke’s Law.  

However, in actuality human liver deformation, there exists 
some degree of damped deformation caused by friction forces. 
Thus, we assume that the mass spring modelling is a damped 
harmonic oscillation and the damping coefficient, γ is taken 
account in the governing MSM equation as follows: 

extijkijkijk Ftxktxtxm =⋅+⋅+ )()()( ��� γ             (1) 

where m , γ and k  are the mass, damping coefficient and 

stiffness coefficient, respectively. While ijkx�� , ijkx� and 

ijkx denote the acceleration, velocity and displacement of a 

control mass point in 3D space. extF represent the external 
forces. 

There are two major properties in determining the MSM 
parameters for each of the springs: stiffness coefficient ( k ) 
and the damping coefficient ( γ ). The stiffness constant is the 
resistance of a deformable object when a force is applied 
along a given degree of freedom and a set of loading points 
and boundary conditions are prescribed to the deformable 
object. In this paper, the stiffness coefficient will be 
determined in Fuzzy Inference System (FIS) by implementing 
the available knowledge and data from previous medical 
research. The detailed determination of stiffness coefficient by 
using the FIS will be further discussed in next section. 

Damping constant, on the other hand, is the capacity built 
into a biomechanical or electrical device to prevent excessive 
correction and the resulting instability or oscillatory 
conditions. The derivation of damping coefficient is directly 
related to the damping ratio and natural frequency. Assume 
that the deformation of human liver is a damped harmonic 
oscillation, we could obtain the damping constant by applying 
(2) as follows: 

w
kςγ 2=

               (2) 
where γ , ς , k and w denote the damping constant, 
damping ratio, stiffness coefficient and natural frequency, 
respectively. Aforementioned, the behavior of the system 
depends relatively on the natural frequency, w and the 
damping ratio, ς . Knowing that when 0→ς , the system is 
basically in undamped condition. Meanwhile, when 1<ς , 
the system is underdamped in which the friction force is 
directly proportional to the velocity of the object. When 

1>ς or 1=ς , the system would be overdamped or 
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critically damped in which the system return to equilibrium 
without any oscillation.  

In this paper, we assumed that the human liver 
deformation is an underdamped system, thus the damping 
ratio is set to be 0.9. This is because when 9.0<ς , the 
resulting damping constant does not fulfil the value in the 
range of benchmark damping constant as shown in Table 1. 
Apart from that, based on the resulting dependency of 
damping ratio, we could not set 11 >= orς  as it will 
cause the system to become critically damped. 

B. Fuzzy Inference System (FIS) 
Generally, a fuzzy inference system (FIS) is built up by 

three components—rules, database and reasoning mechanism. 
The rules consist of a collection of available linguistic 
knowledge. Whereas the database consist of a bunch of crisp 
sets which defines the membership functions based on the 
rules. Here, the database are made up of the sources obtained 
from the past research based on FibroScan®. The reasoning 
mechanism performs fuzzy decision making upon the rules 
and given facts to derive the outputs. In FIS, the inputs could 
either be fuzzy or crisp (exact value) inputs, however, the 
output shall always be crisp value in order to be implemented 
into the real-world system. 

Mathematically, assume that we have two crisp sets (inputs), 
A  and B where A  is a crisp set of x , denoted as 

)( xAμ and B is a crisp set of y , denoted as )( yBμ . Then, 
by applying the IF-THEN knowledge-based rule as a decision 
making mechanism, such that 

If x is A  and y is B then z is C . We have, the two-input 
single-output FIS with the intersection (AND) relationship 
between crisp sets A  and B  as follows: 

))(),((),(
)()()(:),(

yxfyx
zCyBxAyxR

BAR

z

Z
μμμ =∴

→∩            (3) 

Next, the crisp sets is fuzzified by three different fuzzy 
approaches. Thus, we have the following minimum operator 
such that 

YyXxyxBAR BA ∈∈=∩= ,)],(),(min[ μμ         (4) 

C. Reasoning Knowledge to Rules 
In this study, the data sets used as knowledge-based rule are 

obtained from previous medical research. According to the 
medical literature review, the corresponding values of stiffness 
coefficient are obtained by using FibroScan® or Magnetic 
Resonance Elastography (MRE) techniques. Both of these 
techniques are considered as accurate and non-invasive. 

Here, by using (4), the rules matrix as shown in Table I is 
built. Notice that, in Table I, if there exists “AND” 
intersection between the inputs )( xAμ and )( yBμ , it is 

denoted as 1, otherwise. After the rule matrix of the 
corresponding inputs has been built, we proceed to the 
reasoning of knowledge into rules by using the Fuzzy Logic 
Toolbox and the Generalized Fuzzy System (GFS) in 
MATLAB r2014a. 

TABLE I. THE “AND” INTERSECTION BETWEEN THE INPUTS 

INPUTS HCV HBV ALD CLD NAFLD 
HCV 1 0 0 0 0 
HBV 1 1 0 0 0 
ALD 1 1 1 0 0 
CLD 1 1 1 1 0 

NAFLD 1 1 1 1 1 
B - C 0 0 0 0 0 
A – C 0 1 0 0 0 
L – C 0 1 1 0 0 
N – C 0 1 1 1 1 
A – B 0 0 0 0 1 
L – B 0 0 1 0 1 
N – B 0 0 0 1 0 

A–C–B 0 0 0 0 0 
L–C–B 0 0 1 0 0 
N–C–B 0 0 1 1 0 

D. Construction of Mamdani Fuzzy Inference System (M_FIS) 
The Mamdani FIS is constructed through MATLAB r2014a 

Fuzzy Logic Toolbox as shown in Fig. 1. It consists of Fuzzy 
Inference System (FIS) editor, Membership Function Editor, 
Rule Editor, Surface Viewer and Rule Viewer. In this study, 
Gaussian function (gaussmf) is used to represent the 
membership functions for each of the inputs. While Centre of 
Gravity (COG) defuzzification method are implemented to 
obtain crisp output. 

 
Figure I. Mamdani FIS with Gaussian Membership Functions 

E. Construction of Sugeno Fuzzy Inference System (S_FIS) 
In this study, the Sugeno FIS is directly transformed from 

Mamdani FIS by implementing MATLAB r2014a function—
mam2sug. The output membership functions of the returned 
Sugeno system are constants produced from the centroids of 
the consequent membership functions of the original Mamdani 
FIS. The antecedent remains unchanged. The syntax of 
implementing the mam2sug is illustrated as follows: 

mam_fismat = readfis(‘M_FIS.fis’); 
sug_fismat   = mam2sug(mam_fis); 
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After the sug_fismat is generated in the MATLAB workspace, 
we then import it to the Fuzzy Logic Toolbox. The outcomes 
of the Sugeno FIS is shown in Fig. 2. 

 
Figure II. Sugeno FIS with Gaussian Membership Functions 

F. Construction of Interval Type-2 Fuzzy Inference System 
(IT2_FIS) 

The interval type-2 FIS is constructed by implementing the 
open source Generalized Fuzzy System (GFS) into MATLAB. 
The GUI of GFS is similar to the MATLAB Fuzzy Logic 
Toolbox. To start the GFS, we first have to change our 
working directory in MATLAB environment to the folder we 
unzipped the GFS, says C:\GFS. Then, type ‘FUZ’ in the 
command window and press ‘Enter’. A GUI for GFS will be 
opened as shown in Fig. 3. The rules can simply be added to 
the IT2 FIS by appending the existing rules from M_FIS or 
S_FIS to the generated IT2 FIS MATLAB script. The 
membership functions of this approach is different with the 
first two FISs. The shaded region is known as the Footprint of 
uncertainty (FOU). This region is the interval of uncertainty. 
The more area in the FOU simply means the more is the 
uncertainty.  

 
Figure III. Interval Type-2 FIS with Gaussian MFs. 

G. Benchmark Model 
In this paper, the benchmark model is abstracted from 

Basafa and Farahmand (2011). Basafa has developed an 
improved Mass Spring Damper model to simulate the 
nonlinear viscoelastic behaviour of the biological soft tissues 
which interact with a surgical indenter. The model can be 
further extended to exhibit viscoelastic behaviour by adding 

the damping force which reacts directly to the mass point 
proportionally to the velocities, parallel to the spring. 

The general equation is similar to (1) such that 
ext

i
ji

ji
N

j

s
ijiiiii F

rr
rr

FrrrbrbrM =
−
−

+−++ �
=1

0
110 ����

   (5) 
In the benchmark model, s

iF is used to demonstrate a highly 
non-linear elastiv behaviour of the soft tissue. The function 

s
iF is expressed in a two-step expression of the force-

displacement characteristics, in the form of a third degree 
polynomial at low displacements, and a linear behaviour at 
higher displacements, such that 
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   (6) 
where 1K and 2K are constants, CX is the critical 

displacement of the nonlinear springs and parameters A and 
B are defined as follows: 
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            (7) 
Thus, the stiffness coefficient of the spring is  
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           (8) 
with )()( 01 XxXxxijk −=   

Next, to achieve more realistic viscoelastic behaviour of the 
soft tissue deformation the nodal damping forces are further 
extended in the benchmark model. A displacement-velocity 
component and the typical velocity alone component are 
assumed to exist in the damping force. Thus, d

iF is expressed 
as follows: 

( )0
10

0
10 iiiiiid xxxxxxxF −+=−+= γγγγ ���

     (9) 
where 0γ and 1γ are two damping constants. ix and 0

ix are 
the position vector and initial position of node i , respectively. 
The corresponding parameters of this benchmark model are 
tabulated as below: 

TABLE II. THE BENCHMARK PARAMETERS  

However, there remains a major issue in the benchmark 
model which is the determination of model parameters 

Parameters Value 
K1 0.05 N 
K2 10 N 
Xc 0.2 
�0 2 Ns/m 
�1 1000 Ns/m2 
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1K , 2K , CX , 0γ and 1γ . Although the parameters are 
somehow related to the soft tissue mechanical properties, the 
relationship is not well defined. Therefore, these parameters 
do not directly determine with specific constraints. The 
parameters are often tuned manually by fitting the 
experimental data into the model. 

IV. FINDINGS 

A. Results 
In this paper, there consists of 247 rules which are 

generated based on the rule matrix as shown in Table I with 
the corresponding membership functions for each of the inputs. 
The output intersection in terms of surface plot and pseudo-
color for each of the fuzzy approaches are shown in Fig. 4. 
Meanwhile, Fig. 5 illustrated the outcome of the comparison 
between the benchmark model and fuzzy approaches in terms 
of displacement vs time, velocity vs time and velocity vs 
displacement (phase plane plot). 

B. Discussion 
As shown in Fig. 4, the surface plot and pseudo-color of the 

IT2 FIS allows more intersection compared to the Mamdani 
FIS and Sugeno FIS. This is because IT2 consists of type-2 
membership function with certain level of uncertainty interval 
while the membership functions for the other two are made up 
of crisp sets. In Fig.5, it showed that the graphs between the 
IT2 FIS, Mamdani FIS and Sugeno FIS with the benchmark 
model seems to share the similar trend. Therefore, the fuzzy 
approaches in this study show that the stiffness value 
predicted by FIS are in very good agreement with the 
benchmark result. However, how accurate is the stiffness 
value between three of these fuzzy approaches? 

In order to answer this research question, it is crucial to 
obtain the graphs similarity between each of the fuzzy 
approach graphs with the benchmark graph. Taking each of 
the graph vertices, the graphs similarity is measured. The 
range of similarity is [0 1]. The closer the fuzzy approaches 
graph similarity value to 1, the more similar it would be with 
the benchmark graph. Each of the graphs similarity are shown 
in Table III, notice that among the three fuzzy approaches, IT2 
has the highest similarity with the benchmark model. Thus, 
the stiffness value obtained from IT2 is the most accurate 
among the three. 

TABLE III. GRAPHS SIMILARITY 
Graphs Similarity [0 1] 
Benchmark IT2 0.8598 
Benchmark Mamdani 0.8580 
Benchmark Sugeno 0.8549 

V. CONCLUSIONS 
In this study, the fuzzy approaches are proved to be 

powerful approaches in building complex and nonlinear 

relationship between a set of input and output data. The 
stiffness values estimated by fuzzy approaches are in very 
good agreement with the benchmark result. The corresponding 
graphs for each of the fuzzy approaches share the similar trend 
of displacement and velocity with the benchmark model. 
Among three of the fuzzy approaches, the Interval Type-2 FIS 
has the highest similarity with the benchmark model.  

For future development, the Interval Type-2 FIS shall be 
improved in terms of real-time efficiency. More professional 
knowledge shall be added to further improve the accuracy of 
the fuzzy inference system. 
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Figure IV. Surface view of Three Different Approaches 

 
Figure V. Comparison between the benchmark model and fuzzy approaches. 
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