
Effect of Multi-K Contig Merging in de novo DNA
Assembly

Mohammad Goodarzi
Department of Computer Science

Brock University

St. Catharines, ON Canada

Sheridan Houghten, Member, IEEE
Department of Computer Science

Brock University

St. Catharines, ON Canada

Ping Liang
Department of Biological Sciences

Brock University

St. Catharines, ON Canada

Abstract—DNA Assembly is among the most fundamental and
challenging problems in bioinformatics. Near optimal solutions
are available for bacterial and small genomes. However assem-
bling large and complex genomes including the human genome
using Next-Generation-Sequencing (NGS) technologies is shown
to be very difficult. This paper presents an algorithm for creating
contigs from NGS short read data that is capable of working with
multiple k-mer lengths and introduces a technique to combine
contigs generated from different k runs with results from other
assemblers in order to obtain significantly better assemblies.
Experimental results from 9 real datasets show an increase in
N50 value by a factor of 3, when combining newly created contigs
with results from other assemblers.

I. INTRODUCTION

DNA assembly is the process of deducing the unique single
and contiguous sequence of a DNA molecule by using a set of
reads containing shorter sequences from random locations of
the genome. There are different general approaches to solve the
DNA assembly problem including overlap-layout-consensus
(OLC) and de Bruijn graph techniques. Algorithms based on de
Bruijn graphs are shown to be more effective and practical for
large assemblies such as the human genome [1]. In de Bruijn
graph methods, all reads are first processed to find overlapping
substrings of length k. These substrings are called k-mers. All
k-mers from all reads in the dataset are extracted and each
unique k-mers is only stored once, while it can be repeated
in more than one read. The de Bruijn graph approach is the
most used technique for assembling short reads [1]. Using the
de Bruijn graph structure to solve the DNA assembly problem
is first proposed in [2]. For more information about the de
Bruijn graph DNA assembly algorithms, interested readers are
referred to [1], [2], [3].

Three different assemblers including Velvet [4], Meracu-
lous [5] and SOAPdenovo [6] are used for comparisons in
this paper. SOAPdenovo and Velvet are among the most used
DNA sequence assemblers and Meraculous is selected because
of our inspiration from their idea on how to create contigs
from short reads. Velvet introduces a set of algorithms to
manipulate de Bruijn graphs and to eliminate and resolve the
repeating patterns in the genome. In Velvet, first all sequences
that belong to one region are detected and then a repeat
solver algorithm separates paths sharing local overlaps [4].
Meraculous works by using a conservative traversal of a sub-
graph of the de Bruijn graph. The Meraculous contig creation
algorithm only considers unique high quality extensions in
the dataset and does not rely on any other error correction

techniques other than the base quality scores [5]. Based on
Meraculous experiments, we decided to use their technique to
create contigs from the short reads and then implement our
own contig merging algorithm on top of it. This is because we
believe that while Meraculous contigs may be smaller in size,
they are more accurate because of using a more conservative
algorithm that rejects false-positive links between the k-mers.
SOAPdenovo is another short read assembler that is based
on de Bruijn graphs and is shown to be capable of solving
datasets in the size of the human genome. SOAPdenovo uses
similar de Bruijn graph data structures to Velvet, but handles
read locations and paired-read information in a different way
which is further discussed in [6]. SOAPdenovo is shown to be
an aggressive assembler that creates more indels as it tries to
obtain the maximum size for contigs [7].

The k parameter has significant influence on assembly
results and due to reasons such as uneven data coverage,
noisy data and varying repeat structures in different genome
locations, a single value of k does not necessarily give the
optimal result for all locations in the genome. Having a very
large value for k may fail to detect overlaps between the reads,
while a small k value may result in tangled assembly graphs
that are impractical to solve [8].

The DNA assembly problem is usually solved by having
heuristics in mind. These include de Bruijn graph simplifica-
tions or greedy-based techniques that decide on the correctness
of assembly graph edges heuristically. Different heuristics
result in fragmented assemblies from different locations of
the genome. By applying different heuristics and simplification
methods, various assemblies are generated for one genome and
the problem becomes worse when it is infeasible to accurately
select the best result. This is mainly because in de novo DNA
assembly, there is no reference genome available to measure
the correctness of different assemblies. Results with higher
length-based metric values such as the N50 parameter are
currently considered as better assemblies because they are
producing larger fragments from the genome. The N50 value
is a statistical measure of a set of numbers in which all
elements of greater than or equal to the N50 value cover at
least half of the total sum [1]. However, there are experimental
results [1], [9] showing that larger contigs do not necessarily
mean improved results and N50 values can be misleading when
assemblies have many false-positive fragments. For instance, a
new technique for evaluating genome assemblers [7] first splits
the contigs/scaffolds on locations for which the left and right
pieces map onto different locations in the reference genome

2014 IEEE 14th International Conference on Bioinformatics and Bioengineering

978-1-4799-7502-0/14 $31.00 © 2014 IEEE

DOI 10.1109/BIBE.2014.49

355

(a well characterized genome that can be used for evaluation
purposes) and then calculate the N50 value based on the split
contigs. This technique is believed to obtain more accurate
calculations by skipping false-positive links in assemblies.

This paper presents a contig merging algorithm that ana-
lyzes the contigs generated by different assemblers and iden-
tifies the overlapping parts to merge the results and obtain
larger contigs. We also developed our own DNA assembler
based on the Meraculous assembler [5] with modifications that
enable us to perform the assembly with multiple k values. The
remainder of this paper is organized as follows: Section II
discusses the related works in the field. Section III includes
the multi k-mer assembly idea and Section IV presents the
contig merging algorithm. Experimental results are shown in
Section V and conclusions and future work are discussed in
Section VI.

All algorithms presented in this paper are available to
download at http://genomics.brocku.ca/dna assembly/.

II. RELATED WORK

The idea of finding the optimal value for k or using
multiple k parameters has been investigated before. VelvetOp-
timizer [10] performs the Velvet assembly algorithm multiple
times with the aim of finding the best k value. VelvetOptimizer
decides on the best k value based on the N50 value of
assemblies and is an exhaustive approach to find the most
appropriate k which is not practical in case of large datasets.
Moreover, it relies on the N50 parameter to assess the quality
of the assemblies which is not always accurate [7], [11].

IDBA assembler [12] solves the DNA assembly problem by
defining a valid range for the k value and keeps all information
for all k values in the graph, thus benefiting from both small
and large values. Their research is the closest work to our idea.
However, we think that while considering different k values
brings many advantages, importing the results from other tools
and combine them with the internal contigs can also boost the
results.

III. MULTI K-MER ASSEMBLY

Our DNA assembly tool is inspired by the Meraculous
assembler [5]. We selected the Meraculous assembler as the
base idea for our implementation because of the level of
accuracy that it provides [5]. We think that that the accuracy
of the contigs is the most important factor for our contig
merging algorithm to succeed. However, our implementation
differs from Meraculous in several ways:

• Our implementation is capable of running multiple
assemblies with different k values. Our tool can be set
to run different k assembly runs either sequentially or
in parallel. The sequential run demands less memory
and is useful when there are memory limitations but it
takes longer to perform. Conversely, the parallel run
benefits from .NET framework threading techniques
and uses all CPU cores to perform the algorithm
more quickly, while it may require a considerable
amount of memory depending on the data size. In
our tool’s parallel run scenario: one global set of
reads is first created and is used by all k-assembly

runs. Computations for each k-assembly run are set
to be performed in separate threads (likely to run on
separate CPU cores managed by .NET framework)
that significantly improves algorithm’s time. Our tool’s
time and memory requirements are further discussed
in Section V-C.

• Our implementation offers a more compact solution
to work with NGS reads. Instead of using one byte
(8 bits) for each base in the reads, we only use 2 bits
to represent each base (A:00, C: 01, G:10, T:11). In
doing so, each byte represents 4 bases leading to a
75% decrease in the amount of memory required to
load the input NGS data. It should be noted that by
using the proposed bit-structure our tool is not able to
handle DNA sequences with undetermined bases (N
bases).

• As our tool works at the level of bits, we implemented
a new set of data structures and different bitwise
hashing techniques compared to [5].

Many current assembly algorithms consider a fixed value
for k while this parameter has a significant role in obtaining the
best results. There are methods to analyze the input data and
find the most appropriate k value for the given input [13], [14].
However, to the best of our knowledge, many of the proposed
methods assume an even coverage through the input data and
calculate a single k value for the data set; this is not always
correct especially for human genome data because of its size
and heterogeneity in repeating patterns. Moreover, repeating
patterns in the genome have different characteristics and they
play the most important role in the quality of assembly results.
Different k values result in either resolving repeat structures,
or being stuck in the middle of the contig creation process, and
there is not any unique k value that can work for all locations
of the genome. Small k values make the de Bruijn graph very
tangled and messy, thus the paths are not fully detectable and
the quality of results decreases. On the other hand, large k
values may resolve repeat patterns with length of less than
k but may fail to detect overlaps between the reads/k-mers,
particularly in low coverage regions, making the graph more
fragmented [8].

There have been attempts in assemblers such as [4] to run
the algorithms for multiple ks but the assemblers themselves
do not try to further improve the overall results based on the
outputs from multiple k runs.

By running the algorithm for different k values, it is more
likely that the best contigs from all locations of the genome
are created but in different runs. While most of the contigs
from different runs express on the same locations, there are
new regions in each assembly as well. This makes it feasible
to obtain larger contigs by analyzing the results from different
runs and trying to merge the overlapping parts.

IV. CONTIG MERGING ALGORITHM

Contigs are contiguous portions of the genome that the
assembler successfully constructs. Because there is not any
information regarding the strand to which the base reads
belong, contigs are created on both strands which brings two
versions of each contig (the contig itself and its reverse-
complement) to the contig set. However, contigs do not have

356

1 : p <= L1 - 1
2 : while p >= CONTIGS_MIN_OVERLAP do
3 : match <= true
4 : for i = 0 to p - 1 do
5 : if cntg1[L1 - p + i] <> cntg2[i] then
6 : match <= false
7 : break
8 : end if
9 : end for
10: if match then
11: return cntg1 + cntg2.substr(p)
12: end if
13: p <= p - 1
14: end while
15: return null

Fig. 1. Contigs left link check algorithm

1 : p <= 0
2 : while p + L1 >= L2 do
3 : match <= false
4 : for i = 0 to L1 - 1 do
5 : if cntg1[i] <> cntg2[i + p] then
6 : match <= true
7 : break
8 : end if
9 : end for
10: if match then
11: return cntg2
12: end if
13: p <= p + 1
14: end while
16: return null

Fig. 2. Contigs substring check algorithm

any overlap of length more than k with each other, because if
they did this overlap would be detected in the previous steps
of the assembly algorithm, unless they come from different
k runs. Therefore the attempt to merge contigs all generated
from one fixed k value does not improve the results. However,
the merging idea works when the contigs are generated from
different k assemblies.

The first step to merge contigs is to find overlaps between
them. As contigs can belong to either of the genome strands,
reverse-complements are generated for all of them in the first
step. The reverse-complement contigs double the size of the
dataset but we can ensure finding overlaps between the contigs
that construct the same location in the genome but from
different strands. In order to find extensions for the contigs, an
algorithm is needed to check if there is any overlap between
any two inputs. There are three situations in which two contigs
can be linked together:

1) The first contig’s ending bases are matched with the
second contig’s starting bases, thus the first contig
can be linked to the second contig from the left.
The algorithm to check this condition is presented
in Figure 1.

2) The first contig is completely repeated in the second
contig, thus the second contig expresses the merg-
ing result. The algorithm to check this condition is
presented in Figure 2.

3) The first contig’s starting bases are matched with the
second contig’s ending bases, thus the first contig
can be linked to the second contig from the right.
The algorithm to check this condition is presented in
Figure 3.

1 : p <= L1 - 1
2 : while p >= CONTIGS_MIN_OVERLAP do
3 : match <- true
4 : for i = 0 to p - 1 do
5 : if cntg1[i] <> cntg2[L1 - p + i] then
6 : match <= false
7 : break
8 : end if
9 : end for
10: if match then
11: return cntg2 + cnt1.substr(p)
12: end if
13: p <= p - 1
14: end while
15: return null

Fig. 3. Contigs right link check algorithm

1 : Contig cntg1;//cntg 1 is always the smaller contig
2 : Contig cntg2;
3 : L1 <= length(cntg1)
4 : L2 <= length(cntg2)
5 : Consensus <= RightLinkCheck(cntg1, cntg2)
6 : if consensus <> null then
7 : return consensus
8 : end if
9 : consensus <= LeftLinkCheck(cntg1, cntg2)
10: if consensus <> null then
11: return consensus
12: end if
13: consensus <= SubStringCheck(cntg1, cntg2)
14: if consensus <> null then
15: return consensus
16: end if
17: return null

Fig. 4. Finding contigs overlap algorithm

In all of the algorithms introduced in Figures 1, 2 and 3,
variable p defines the overlap length between the two contigs
and a loop is used to check for equality between the two
contigs with regards to the p value. For the left-link-check
and right-link-check algorithms (Figure 1 and Figure 3) the
procedure starts with the maximum possible value for p and
decreases it until finding a match between the two contigs. For
the contig-substring-check algorithm in Figure 2, the procedure
checks to see if the first contig is entirely seen in the other
contig or not.

Figure 4 shows the procedure for finding the overlap
between two input contigs (consensus sequence). It calls other
procedures presented in Figure 1, Figure 2 and Figure 3 to
check for all conditions in which two contigs can generate
a consensus sequence. The minimum overlap length between
the contigs can be set in the assembly’s configuration file and
usually equals to the minimum k value considered.

Being able to merge any two input contigs, an iterative
procedure can be devised to merge and extend contigs until no
more extension is found. This procedure is shown in Figure 5.

A. Importing External Contigs

While merging the results from different runs of our own
assembly algorithm helps creating better contigs, importing
and mixing the contigs from other tools can also be very
beneficial. Each assembler has a unique way of creating contigs
with various heuristics and assumptions involved, which leads
to different results for one input dataset. We argue that while
most parts of the genome may be created correctly by all
assemblers, there are some regions that are only built by

357

1 : while contigs > 1 do
2 : baseContig <= contigs[0]
3 : remove baseContig from contigs
4 : overlapFound <= false
5 : List<Contig> newlyAddedContigs
6 : for all cntg in contigs do
7 : consensus <= ContigsOverlaped(baseContig, cntg)
8 : if consensus <> null then
9 : remove cntg from contigs
10: add consensus to newlyAddedContigs
11: overlapFound <= true
12: if consensus == cntg then
13: break
14: end if
15: end if
16: end for
17: add newlyAddedContigs to contigs
18: if overlapFound == false then
19: add baseContig to finalContigs
20: end if
21: end while
22: return finalContigs

Fig. 5. Contigs expansion algorithm

some techniques and left over by others. We believe that
building contigs with different initial k values and merging
them with results from other tools should lead to better
assembly results. Experimental results in Section V show the
improvements obtained from merging external contigs to the
outputs generated from our own algorithm.

V. EXPERIMENTAL RESULTS

All of the datasets considered in this paper are from
NCBI SRA database for human sample ID, NA12878. These
sequences were generated using Illumina HiSeq 2000 with
pair-end sequencing at 100bp× 2. We created 9 datasets with
different genome lengths for our experiments in this paper
that are presented in Table I. All assemblers ran to the point
at which the contigs are produced. The rest of the assembly
process (including contigs orientation, scaffolding using mate-
pairs and etc.) are skipped as our focus in this paper is sorely
on the contigs.

We use the human reference genome (hg19) to estimate
the accuracy of the contigs and detect the false links between
the final contigs. In order to detect the false links, we split
each contig from all locations for which the left and right
fragments are aligned to distant locations in the reference
genome, meaning the contigs are not built in a correct way
and should split. In other words, we consider alignment blocks
from the BLAT [15] tool as the correctly mapped fragments
and the maximum allowable gap between the alignment blocks
is set to 50 bases. Among all possible alignments for each
contig, the alignments that are not in the selected region are
filtered out first and then the best scoring alignment is selected
for each contig.

From now on, when we refer to the N50 value, we mean
the calculated value based on the fragments generated by
splitting contigs in described locations, and not the base
contigs which are the actual outputs of the assemblers. Note
that this approach focuses more on true positive results (which
is our focus in the merging algorithm), while it may neglect
the effect of false positives in the final results of algorithms
(including our own). It should also be noted that in order to
compare different assemblies based on the N50 statistics, we

use a modified version of the N50 in which the genome length
is used as the reference total sum.

TABLE I. EXPERIMENTAL DATASETS

Dataset Genome Length Location Chrom. # Reads

1 1Kb 100k-101k 1 190

2 10Kb 100k-110k 1 3452

3 10Kb 60k-70k 10 1296

4 100Kb 100k-200k 1 19246

5 100Kb 60k-70k 10 17178

6 1Mb 100k-1100k 1 190030

7 1Mb 60k-1060k 10 182370

8 10Mb 100k-10100k 1 1766556

9 10Mb 60k-10060k 10 1825054

There are two main criteria for the experimental results:

• N50 comparisons: Measuring the quality of results
based on contigs’ length. Before calculating N50 val-
ues, contigs split into several fragments as described
in section V.

• External contigs expansion results: Investigating the
quality of results when external contigs are added to
our generated contigs and the contig merging algo-
rithm is performed on the dataset.

Three assemblers including Meraculous [5], SOAPden-
ovo [6] and Velvet [4] were selected to run on the given
datasets. Our tool is capable of running the assembly process
for multiple k values in parallel with any k value set pro-
vided. Other tools either do not have this feature or have it
implemented in a way that cannot accept all k combinations
in one run; therefore we ran each assembler for each k value
individually and obtain the average between the runs. The
k values that are used in our experiments are fixed for all
datasets, and cover a range of small and large values. These
values are k = 19, 31 and 41. While it is not guaranteed that
the selected k values produce the best assembly results, we
argue that values of smaller than 19 and larger than 41 are not
reliable enough to do our experiments. However, we have left
the investigation on finding the most appropriate k values for
each dataset for the future works.

A. N50 Results

Figure 6 demonstrates the N50 comparisons between our
tool and the Meraculous assembler. We perform this compar-
ison because of the fairly similar contig creation algorithm
that two assemblers have. Thus we can clearly demonstrate
the efficiency of our own specific modifications. Results show
that our tool has better performance in all of the experimented
datasets. The most important factor for the better performance
is using multiple k values in the assembly process. Different
k values produce reasonably large contigs from different lo-
cations in the genome and merging the results from various k
runs considerably boosts the performance. This helps obtaining
significantly better results in some cases.

In two of the datasets the Meraculous assembler has an N50
value of zero which means the total length of all fragments
is not more than half of the targeted genome’s length, while
our tool obtains N50 values of 86 and 573 respectively.
Considering only the remaining 7 datasets, our tool creates
contigs that are 6.15 times larger than those produced by
Meraculous. It is worth noting that all of the input short reads

358

Fig. 6. N50 results. Comparing our tool’s performance to Meraculous on 9 datasets

are 100 bps in length but the minimum acceptable length for
contigs is set to the minimum k value. Therefore, in some of
the datasets we obtain N50 values of less than 100.

B. External Contigs Merging Results

This section presents results for performing the contig
merging algorithm described in Figure 5 when external contigs
from other tools are imported into the system. For each
assembler, the best run with the highest N50 value is selected.

Figure 7 (top chart) shows experimental results for inte-
gration of our tool with the Velvet assembler. Results show
that combining our contigs to contigs generated by Velvet
significantly increases the quality of results leading to larger
fragments from the genome and better N50 values. All datasets
show improvements in results and the N50 value is increased
by on average a factor of 3.2.

Figure 7 (middle chart) presents results for integration of
our tool with the SOAPdenovo assembler. Results show that
combining our tool’s contigs with contigs generated by the
SOAPdenovo assembler also generates better results, having
larger fragments and N50 values. The N50 value is increased
by on average a factor of 3.06.

Figure 7 (bottom chart) presents results for integration
of our tool with the Meraculous assembler. Results show
significant improvements in N50 values by merging our tool’s
contigs with contigs generated by the Meraculous assembler.
The N50 value is increased by on average a factor of 3.5. In
two datasets Meraculous has an N50 value of zero that are
excluded when calculating the average.

Results obtained in this section support the idea that it
is possible to obtain improved assembly results by merging
external contigs to our contigs that are created with multiple
k values. This in fact shows that some of contigs generated
by our tool are from the locations that are left over by
other assemblers, therefore overlaps can be found between the
results. However, there are also false positive links between
the merged contigs, thus creating incorrect fragments in the
results. Currently, we avoid the influence of the false contigs

in our results by splitting the contigs from different locations
using the BLAT alignments on the human reference genome.

C. Time and Memory Requirements

1) DNA Assembly Algorithm: Our implementation for the
DNA assembly algorithm uses considerably less amount of
memory compared to other assemblers as it only uses 2 bits
to represent each base in NGS reads. This effectively reduces
the memory requirements of the algorithm. Once the k-mers
are built during the assembly process, the tool does not need
to acquire any additional memory to perform the algorithms,
meaning that the memory requirement is dependent on the
number of k-mers which increases with the size of the input
data. The largest dataset experimented in this paper covers a
region of 10 million base pairs in human genome and has about
2 million short reads. On this largest dataset, the algorithm
takes about 1.3 GBs to complete the process for three k values
in batch sequential mode and about 2.6 GBs to complete
the process in parallel mode. As the memory requirement
grows linearly with the number of k-mers (and consequently
reads), we expect the tool to be able to perform assembly runs
for datasets of about 10 million reads on currently available
personal computers (less than 12GBs of memory).

In terms of time requirements, the largest dataset in our
experiments takes less than 30 minutes to complete, and we
expect the time requirements for larger datasets to increase
linearly to the dataset’s size (number of reads). Because our
tool only supports the contig creation phase of the assembly
process and does not implement the rest of algorithms in
assembly pipeline (including scaffolding) yet, we are not able
to directly compare our time and memory requirements to other
assemblers. However we believe that our algorithm’s time and
memory complexity is comparable and in the same level to
most of other assemblers. However, supporting this claim in
a more concrete and scientific way is left for our future work
when our assembly pipeline is completed.

2) Contig Merging Algorithm: The contig merging algo-
rithm accepts a set of generated contigs from different assem-
bly tools. As the number of contigs are very small compared

359

Fig. 7. Improvements made to other assemblers results with Contig Merging algorithm. Top: Merging our tool contigs to Velvet results increased the N50
value by average factor of 3.2. Middle: Merging our tool contigs to SOAPdenovo results increased the N50 value by average factor of 3.06. Bottom: Merging
our tool contigs to Meraculous results increased the N50 value by average factor of 3.5.

360

to the number of reads in NGS data, the algorithm does not
demand much memory to perform and it barely requires more
than 2 GBs of memory even for very large inputs. However, the
algorithm has an exponential time complexity as it compares
each and every contig with other contigs in the assembly runs
and tries to find overlaps between them. For small inputs, the
algorithm completes in only a couple of minutes. However, for
large datasets containing more than 4000 contigs in which the
longest contigs are more than 80Kb in length, the algorithm
takes about 10 hours to complete.

VI. CONCLUSION AND FUTURE WORK

The de novo DNA assembly problem is still an open
problem to solve, specifically for large genomes, such as the
human genome, which have a variable but a high level of
repetitive sequences. This paper focuses on creating contigs
from short reads generated by Next-Generation-Sequencing
technologies and merging other assemblers’ contigs with those
generated by our tool in order to obtain improved results. Our
contig creation algorithm is capable of running the assembly
process with several k values in parallel and merging the results
from different runs at the end. Experimental results show
considerable improvements in results when using multiple k
values and importing external contigs to the assembly process.

Usually the heuristics that are breaking the contigs in
different assemblers are to ensure the correctness and quality
of the results. Thus, merging them back together without much
consideration may cause false positive overlaps and decreases
the quality of the results. The most important future direction
for our research is to investigate the exact false positive rate
when joining contigs from different k assemblies and different
assemblers and try to only select the true positive results
among all generated overlaps.

Measuring the quality of the assemblies in the de novo
DNA assembly problem is challenging as there is no reference
genome. We would like to investigate using other quality
measurement techniques instead of the N50 value to better
decide on the quality of the contigs.

The de novo DNA assembly problem is a large problem
consisting of several parts. Pruning input datasets in order
to remove noisy parts, creating contigs based on the short
reads, orienting contigs by using mate-pair information and
creating scaffolds based on contigs are all different stages of
a DNA assembly process. This paper focuses only on creating
contigs from short reads, while completing other stages of
the DNA assembly is in our future work. For now we have
avoided using the wrong contigs to influence the N50 value in
our experiments by discarding the contigs with their left and
right alignments mapping to different locations in the human
reference genome.

We would also like to investigate using pair-read infor-
mation during the contig creation algorithm. By having the
estimated distance between the pair-reads in the genome, we
want to investigate new ways to create contigs that have more
correct links and fewer false links, leading to more accurate
results.

Other future directions for our work include automatically
finding the minimum overlap length parameter in the contig

merging algorithm and extending our assembly algorithm to
do scaffolding.

ACKNOWLEDGMENT

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

[1] J. R. Miller, S. Koren, and G. Sutton, “Assembly algorithms for next-
generation sequencing data,” Genomics, vol. 95, no. 6, pp. 315–327,
2010.

[2] P. A. Pevzner, H. Tang, and M. S. Waterman, “An eulerian path approach
to dna fragment assembly,” Proceedings of the National Academy of
Sciences, vol. 98, no. 17, pp. 9748–9753, 2001.

[3] M. Pop, “Genome assembly reborn: recent computational challenges,”
Briefings in bioinformatics, vol. 10, no. 4, pp. 354–366, 2009.

[4] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read
assembly using de bruijn graphs,” Genome research, vol. 18, no. 5, pp.
821–829, 2008.

[5] J. A. Chapman, I. Ho, S. Sunkara, S. Luo, G. P. Schroth, and D. S.
Rokhsar, “Meraculous: de novo genome assembly with short paired-
end reads,” PloS one, vol. 6, no. 8, p. e23501, 2011.

[6] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan,
K. Kristiansen et al., “De novo assembly of human genomes with
massively parallel short read sequencing,” Genome research, vol. 20,
no. 2, pp. 265–272, 2010.

[7] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren,
T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts et al., “Gage:
A critical evaluation of genome assemblies and assembly algorithms,”
Genome research, vol. 22, no. 3, pp. 557–567, 2012.

[8] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin,
A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski
et al., “Spades: a new genome assembly algorithm and its applications
to single-cell sequencing,” Journal of Computational Biology, vol. 19,
no. 5, pp. 455–477, 2012.

[9] K. R. Bradnam, J. N. Fass, A. Alexandrov, P. Baranay, M. Bechner,
I. Birol, S. Boisvert, J. A. Chapman, G. Chapuis, R. Chikhi et al.,
“Assemblathon 2: evaluating de novo methods of genome assembly in
three vertebrate species,” GigaScience, vol. 2, no. 1, pp. 1–31, 2013.

[10] (2014) Velvetoptimizer. [Online]. Available:
http://bioinformatics.net.au/software.velvetoptimiser.shtml

[11] G. Narzisi and B. Mishra, “Comparing de novo genome assembly: the
long and short of it,” PloS one, vol. 6, no. 4, p. e19175, 2011.

[12] Y. Peng, H. C. Leung, S.-M. Yiu, and F. Y. Chin, “Idba–a practical iter-
ative de bruijn graph de novo assembler,” in Research in Computational
Molecular Biology. Springer, 2010, pp. 426–440.

[13] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
I. Birol, “Abyss: a parallel assembler for short read sequence data,”
Genome research, vol. 19, no. 6, pp. 1117–1123, 2009.

[14] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte,
E. S. Lander, C. Nusbaum, and D. B. Jaffe, “Allpaths: de novo assembly
of whole-genome shotgun microreads,” Genome research, vol. 18, no. 5,
pp. 810–820, 2008.

[15] W. J. Kent, “Blatthe blast-like alignment tool,” Genome research,
vol. 12, no. 4, pp. 656–664, 2002.

361

