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Abstract—With the recent rapid increase in the number of 
physical facilities and structures that need to be protected by 
restricting physical access to them, there has been an explosion in 
the number and type of physical access control systems being 
deployed to protect them. However, these systems are quite 
different from each other and there is no common standard that 
provides for interoperability between the various systems. The 
number and types of access devices being employed has grown 
steadily, but the systems in which they are being used are 
physically and technologically incompatible with each other. 
Consequently, there is renewed interest within the research 
community in developing a common universal system providing 
physical resource access protection regardless of the type of 
physical resource and where it is located. In this article we 
propose the Universal Physical Access Control System (UPACS) 
which provides a universal framework for controlling access to 
physical resources. It provides for the use of a wide variety of 
access devices and allows for both onsite and remote access. We 
show how it can be used to control access to any type of resource, 
including homes, vehicles and public infrastructure such as street 
lights and traffic lights and industrial infrastructure such as 
power plants. We also show how it can be implemented 
regardless of the location of the owner of the physical resource 
and the location of the resource relative to its users. 

Keywords—Physical Access Control Systems, Remote Access, 
UPACS, Asset Security. 

I. INTRODUCTION  
The many physical access control systems in use today are 

incompatible with each other. Each system controls access to 
the physical resources it is deployed to protect by providing a 
proprietary interface between an access device and a 
proprietary protecting device deployed at the physical 
resource to be protected. And due to these limitations and the 
recent proliferation of access control systems, there has been 
renewed interest within the research community in developing 
a universal access control system that functions across all 
manufacturer and device type platforms and provides for the 
seamless interchange of access control devices between access 
control service providers while still ensuring secure access to 
the protected physical resources. 

To solve these problems we propose the Universal 
Physical Access Control System (UPACS), an encryption-
enabled protocol which provides secure access to physical 
assets, each protected by a single customizable access control 
device. Access may be onsite or remote, and may utilize 

several types of access devices, including mobile phones, 
tablets, computers or any future devices that are capable of 
communicating over a public network. Furthermore, the 
number and types of physical resources it is capable of 
protecting is boundless. Due to its open architecture, it will be 
able to protect access to future physical assets with yet 
unthought-of functionality. The protocol is applicable 
anywhere access to physical facilities needs to be restricted, 
for example power plants, chemical plants, public 
infrastructure, as well as private property, including homes. 
Critical switches, doors, windows, and lights can all be 
protected, and sensor readings may also be received from 
remote sensors. 

Users determine the number and configuration of the 
physical assets they may control, being able to easily add to 
and delete devices from their portfolio. Users may also assign 
or transfer access rights to other users, facilitating delegation 
of management of access control activity. Users manage 
access control by issuing commands to network nodes, one of 
which is physically positioned at each device under 
management. Depending on their requirements, users may 
delegate all or a subset of their own access permissions 
required to send commands to a node, and they can do so 
without the need for supervisor interaction. Users with 
appropriate permissions may easily commission and 
decommission network nodes, and remove users with only 
delegate rights as they require. 

The remainder of this paper is structured as follows: 
section II describes the evolution of physical access control 
systems, highlighting the most important and relevant ones 
inspiring the development of UPACS; section III describes the 
UPACS framework and protocol suite in detail; and in section 
IV is the conclusion and plans for future work. 

II. CRITICAL REVIEW OF CURRENT PHYSICAL ACCESS 
CONTROL SYSTEMS 

Access control systems have been deployed in many 
applications in everyday life. They are used to restrict access 
to critical industrial plant facilities, for example an electrical 
power grid. They are also used to control access to 
government and military facilities, and are increasingly 
employed to control access to residential appliances. 

There are two broad categories of access control systems 
[1]. Mechanical access control systems allow access only 
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when there is a mechanical match between an access device 
and a blocking device. One simple example of such a system 
is a lock and key or unlocking combination, with the lock 
blocking access to protected resources until a key or unlocking 
combination is used to gain access. Unfortunately, this type of 
system is useful only when the user is physically present at the 
blocking device along with the access device and cannot be 
used remotely. Another limitation of mechanical access 
control systems is that any required security enhancements to 
the system may require costly replacement, reconfiguration or 
re-issuance of all of the access devices, and as such may be 
difficult to implement [1]. 

Unlike their mechanical counterparts, electronic access 
control systems rely upon an electronic match between an 
access device and the access control system. User 
authentication is performed by means of an electronic 
authentication protocol, and can be done either locally or 
remotely. Compared with mechanical systems, such systems 
are more suited to rapid adaptation to meet changing 
deployment requirements. As a consequence, electronic access 
control systems have evolved much more rapidly than their 
mechanical counterparts, and have benefitted from the 
development of several electronic authentication protocols. 

A. Electronic Authentication Protocols 
Currently the four most technologically important 

categories of electronic authentication protocols are those 
based on cryptography, biometrics, Physical Unclonable 
Functions (PUFs), and access cards. Each class of protocol 
makes use of a secret key or access process by which a user 
can gain access to protected resources. However, as with 
mechanical access control systems, there are strengths and 
weaknesses inherent in each type of approach. In particular, it 
is easy to understand how compromise of the access key could 
jeopardize the effectiveness of the protocol, though it must be 
noted that this is less of a risk factor with regard to biometric 
protocols. 

Cryptography-based Protocols: Cryptography uses keys 
to provide secure communication between two entities. There 
are two categories of cryptographic protocols: symmetric 
protocols and asymmetric protocols. 

Symmetric cryptographic protocols use a single key for 
both encryption and decryption. Two well-known examples of 
symmetric cryptographic protocols are the Data Encryption 
Standard (DES) and Advanced Encryption Standard (AES) 
protocols. Once adopted as the United States federal 
government standard for exchange of sensitive documents, 
DES is now considered to be no longer secure [2] due to its 
56-bit key size limitation. It has since been replaced by AES, 
which allows key sizes up to 256 bits. However, even AES is 
not as secure as it once was as available computing power that 
can be used to attack systems protected by AES grows sharply 
[2]. 

Asymmetric cryptographic protocols use a public key and 
a private key to provide secure communication between two 
entities. The public key is used by a sender to encrypt 
messages intended for a chosen recipient, and the private key 
is known only by the intended recipient, who uses it to decrypt 

messages it receives that were encrypted using its published 
public key. Examples of asymmetric cryptographic protocols 
are RSA (named after its inventors Ron Rivest, Adi Shamir 
and Leonard Adleman), Diffie-Hellman with the Digital 
Signature Algorithm (DH/DSA), and Elliptic Curve 
Cryptography (ECC). 

RSA encrypts messages using a public key algorithm 
based on the product of two very large prime numbers, and 
decrypts messages using a private key algorithm based on the 
two prime numbers used to create the associated public key 
[2]. Due to the difficulty of factoring the product of two very 
large prime numbers to recover the factors given only the 
product, RSA has proven to be a very secure encryption 
protocol. However, increases in computer processing power 
used by attackers require explosive growth in RSA key sizes 
in order to provide the same level of security. Diffie-Hellman 
with the Digital Signature Algorithm (DH/DSA) is an 
improvement on RSA and achieves its strength from the 
difficulty of solving the discrete logarithm problem. DH/DSA 
computes a function y = (gx)mod p, where p is a very large 
prime number and g and x are smaller than p. Encryption 
using public key y and decryption using private key x are done 
by solving the (tractable) exponentiation problem. However, 
unauthorized decryption requires solving the discrete 
logarithm problem which is intractable for very large p [2], 
since although y is known, x is not. Unfortunately, as with 
RSA, increases in compute power used by attackers requires 
explosive growth in key sizes in order to maintain the same 
level of security. 

ECC is an improvement upon DH/DSA that also requires 
growth in key sizes in order to keep up with increased attacker 
computing power, but more modest growth than required by 
DH/DSA [2]. It is similar to DH/DSA in that successful 
attacks require solving an intractable discrete logarithm 
problem. However, the prime field upon which p is defined is 
a set of points on an elliptical curve, with specific rules as to 
how to get from any point on the curve to the next point in 
sequence. ECC defines points P and Q on an elliptical curve 
y2 = x3 + ax + b such that Q = kP, where Q is a public key and 
k is its corresponding private key. Encryption using public key 
Q and decryption using private key k require solving a 
(tractable) elliptic curve multiplication problem. However, 
unauthorized decryption requires solving the elliptic curve 
discrete logarithm problem, which is intractable for very large 
p [2] since although Q is known, k is not. However, although 
the required growth in key sizes to keep pace with the growth 
in available attacker computing power is not as steep as for 
DH/DSA, it is still substantial and represents a limitation of 
even this class of cryptographic protocols. 

Biometrics-based Protocols: Biometric authentication 
uses unique characteristics of individual users to identify and 
authenticate them to the system. Among the more commonly 
used identification features are the user’s iris, retina, 
fingerprint, palm print, voice, face or signature, as these are 
considered to be unique for each person [3]. Other features 
studied include peculiarities in eye movements [16] and 
electroencephalogram (EEG) signals [15]. However, to avoid 
security breaches due to the unauthorized imitation of one of 
these features, it is common for biometrics-based protocols to 
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employ multi-factor authentication, basing classification on 
more than one identification feature [3], for example voice and 
fingerprint. 

However, biometrics-based protocols suffer from the 
limitation that access privileges cannot be transferred [1] 
among users, and in addition they are exposed to security 
breaches if the reference database is compromised. 

Chip-level Authentication Protocols: Often access 
devices are identified and authenticated using protocols based 
on an encrypted key digitally stored in non-volatile memory. 
Such protocols are able to authenticate a device to the system if 
its stored key is present in the system’s reference database. 
However, digitally stored keys are vulnerable to security 
breaches, and protocols based on encryption are impractical for 
power-constrained devices [4]. To solve these problems, 
devices can be uniquely identified by employing a Physical 
Unclonable Function (PUF) [4] [11] [12] [14]. A PUF is a 
function determined from the random peculiarities of the 
fabrication characteristics of individual integrated circuits, for 
example transistor delay signatures along specific paths [4]. It 
is known that when integrated circuit chips are fabricated, the 
timing delays along wiring and transistor paths through the 
integrated circuit are unique for each IC, and as such represent 
a unique identifier for each IC. A PUF creates a set of 
challenges and responses that comprise a lock to which there is 
only one key: the specific IC for which the lock was created, 
thus allowing authentication of only the correct device. 

However, PUFs are susceptible to bit-flipping [17] and 
device aging [13]. Timing differences between signals 
propagated through the IC along two paths of similar length 
sometimes change such that the slower path becomes faster 
than the previously faster path, resulting in a phenomenon 
known as bit-flipping. As a consequence, the correctness of 
operation of any PUFs built using the paths in question will be 
adversely affected [17]. In addition, as the IC gets older 
propagation timings along various paths may change, thereby 
affecting PUF accuracy [13]. Yet another limitation of PUF 
security is that it is vulnerable to compromise in the event of 
unauthorized access to the PUF challenge-response pair 
reference database, or to eavesdropping of the challenge-
response pairs exchanged between legitimate users and the 
system [11]. 

Access Card Authentication Protocols: Access card 
authentication protocols use identification (ID) information 
stored on an access card and an authentication algorithm to 
determine if the access card with the given ID is allowed 
access to the requested resources. They may also determine the 
user’s appropriate level of access to each resource and restrict 
access accordingly. An acknowledged best practice is to avoid 
storing sensitive access control information (such as user 
passwords) on the server but to store any required information 
on the card itself, and several protocols have been designed 
around this principle [6] [7] [18]. And to further enhance 
security, some access card authentication protocols employ 
multi-factor authentication [8] [9] [19], combining card 
authentication with other authentication factors, such as a 
user’s password. In general, access control protocols can be 

segmented into three phases: the Registration Phase, the 
Access Request Phase, and the Verification Phase [5]. 

Registration Phase: In the registration phase, the user 
submits his ID and password to the server, which then creates 
an access control list with appropriate permissions for each 
server resource and stores it along with a hash function on a 
new access card to be issued to the user. 

Access Request Phase: In the access request phase, the user 
requests access by presenting his access card to the server 
along with his ID and password, and the access card sends a 
request to the server for the pre-assigned access levels. 

Verification Phase: In the verification phase, the server 
verifies the validity of the user and request, verifies that the 
requested resource access levels are as pre-assigned, and 
approves/denies the request as appropriate. If the request is 
approved, the server sends the approval response to the card, 
which then attempts to verify the validity of the approval and 
the server. 

A security analysis reveals the system’s vulnerability to 
various forms of attack, and its ability to protect the privacy of 
communications between the server and users, determined by 
whether or not messages between the server and users are 
visible to others. There are several known types of attack. 

Reflection Attack: A reflection attack occurs when an 
adversary intercepts a legitimate user’s messages and 
impersonates the server. 

Parallel Session Attack: A parallel session attack occurs 
when an adversary intercepts messages from the server to a 
legitimate user and uses the user’s credentials to impersonate 
the user and begin a new session with the server. 

Privilege Elevation Attack: A user with previously valid 
but now revoked resource access levels may attempt to access 
resources at the revoked access levels. 

Replay Attack: An adversary may replay a message 
between the server and a legitimate user. 

Man-in-the-Middle Attack: An adversary may intercept and 
modify messages between the server and a legitimate user. 

 

TABLE I.  UPACS PROTOCOL 

Process Purpose 

Resource Registration Register a new resource 

Child Node Addition Add a child node to control an 
individual device 

Child Node Deletion Delete a child node that is no longer 
needed 

Access Rights Modification Assign all or a subset of a user’s 
access rights 

User Deletion Delete a user 

Resource Actuation Actuate a physical device 
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III. UPACS FRAMEWORK AND SYSTEM DESCRIPTION 
UPACS is a communication protocol providing secure 

access to a wide variety of physical devices and the ability to 
control the behavior of those devices over an unsecure 
network, such as the internet. As such it provides secure access 
to physical devices from anywhere there is an internet 
connection. It is made up of four main components: a user 
interface from which requests to interact with remote physical 
devices can be made; a resource controller known as a parent 
node which is accessible to the user over any public or private 
network; local device controllers known as child nodes, that 
are placed on location wherever a physical device is to be 
accessed and manipulated; and a trusted key server capable of 
administering cryptographic key management over the 
network. Protocol processes are designed to withstand network 
attacks enabled by the use of public untrusted networks in 
fulfilling the requirements for users to interact with remote 
physical resources, which may be any assortment of homes, 
physical plants, public infrastructure, or any other physical 
facilities for which secure remote access is required. 

 

 

 
Messages exchanged between protocol participants are sent 

over a public channel, thereby allowing an attacker to freely 

inspect and attempt to manipulate them. The protocol uses 
symmetric and asymmetric encryption techniques to protect the 
secrecy of these messages, with a trusted key server tasked 
with the responsibility of facilitating mutual authentication of 
the other protocol participants. 

In the execution of the protocol, users request services from 
parent nodes, each of which controls access to one or more 
child nodes. Each child node protects access to a single 
physical device, and authorized users may send commands to 
the child nodes to control the behavior of the devices under 
their control. A child node may be deployed anywhere on the 
network, since the protocol is not limited in terms of 
geographical placement of managed resources. Examples of 
physical devices that may be controlled by a child node include 
doors, windows, lights, medical devices, sensors, chemical 
devices, nuclear devices, and so on. 

Parent nodes require a CPU, a real time clock (RTC) to 
provide time stamps, a GPS to provide location, flash memory 
to provide non-volatile storage of user and parent identities and 
nonces as well as device commands and user permissions, a 
near field communication (NFC) component to allow secure 
configuration of child nodes, and a GSM module for global 
network identity. A child node requires only a CPU, RTC and a 
small flash memory to store their commands and associated 
responses. Figure 1 depicts a parent node and Figure 2 depicts 
a child node. Figure 3 models a building being protected by a 
system of n UPACS child nodes. 

The process of providing secure access to a physical 
resource using the Universal Physical Access Control System 
begins with the registration of the physical resource. We use 
the terms resource and physical device such that a resource is 
the collection of physical devices associated with a single 
parent node. Resource registration assigns a resource identity 
to the resource’s parent node and is necessary before any of the 
other protocol processes take place. These processes are listed 
in Table I. 

The owner of a resource registers its parent node P using 
the Resource Registration process, and subsequently may add 
any required child nodes Ci, i > 0 using the Child Node Addition 
process. There is no limit to the number of child nodes that 
may be added to a resource. Child nodes no longer needed may 
be deleted using the Child Node Deletion process. Only 
resource owners may add or delete child nodes. 

Users may delegate or assign resource access rights to other 
users by means of the Access Rights Modification process. A 
user does not have to be the resource owner to transfer or 
delegate child node access rights to another user. Any user may 
initiate the Access Rights Modification process and transfer all 
or a subset of his access permissions to another user without 
the need for supervisory interaction. The protocol prevents 
Elevation of Privilege attacks, preventing users from 
‘transferring’ access permissions greater than their own. 

Users no longer required or allowed to actuate a given 
device may be deleted by means of the User Deletion process. 
Note that deletion of a user applies only to the specific child 
node from which they have been deleted, and does not affect 
that user’s ability to access any other child nodes that they have 
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been assigned to manage. This allows users to be re-assigned to 
manage new devices as needed. Only resource owners are 
authorized to delete users. 

The physical devices that are controlled by individual child 
nodes may be actuated by authorized users using the Child 
Node Actuation process. A user may receive node actuation 
permissions on a per command basis either from the resource 
owner or from another user with approved access to the same 
command for the same child node.  

 
The Universal Physical Access Control Protocol is 

extendible, allowing for an unlimited number and type of 
devices that could be controlled, and for the configuration of 
each child node to satisfy the unique requirements of the 
physical device that it is tasked to control, thereby ensuring 
sustained adequacy in meeting the requirements necessitated 
by future technological development. Prior to the addition of a 
child node, the node is a virgin embedded device capable of 
being custom configured to behave as required by the creating 
user. The child node addition process could then be used to 
download a custom state machine to the device, which allows 
the protocol to be used to accommodate future technological 
requirements.  

A. Mutual Authentication BetweenUser And Parent 
The resource owner U0 (which could be a person or a 

process) has an asymmetric key pair: a secret key skU0 and a 
public key pk(sKU0). Similarly the resource’s parent node P 
has an asymmetric key pair: secret key skP, and public key 
pk(skP) which is known to U0. 

Prior to executing any of the service aspects of the protocol, 
users and parents have to be mutually authenticated to each 
other, making use of the trusted key server S. To accomplish 
this, U0 first sends a request for P’s public key to key server S. 

• U0�S : request(pk(skP)) 

S returns P’s identity and public key, signed with its secret 
key skS: 

• S� U0 : sign((P , pk(skP)), skS) 

U0 generates a fresh nonce NU0 and sends its identity and 
nonce to P, encrypted with P,’s public key. 

• U0�P : encrypt((U0, NU0), pk(skP)) 

P decrypts the message to recover U0 and NU0 and sends a 
request to key server S for U0’s public key: 

• P�S : request(pk(sk U0)) 

S returns U0’s identity and public key, signed with its secret 
key skS: 

• S� U0 : sign((U0 , pk(sk U0)), skS) 

P generates a fresh nonce NP and sends NP, NU0 and its 
identity to U0, encrypted with U0’s public key: 

• P�U0 : encrypt((NP, NU0, P), pk(skU0)) 

U0 decrypts the message and if the message contains its 
nonce it knows it is communicating with the right resource 
parent. It then sends back P’s nonce NP along with its request 
for additional protocol services, encrypted with its own nonce 
NU0. When P receives and decrypts this message, if the 
message contains its nonce NP then mutual authentication is 
complete and P will process the U0’s request: 

• U0�P : sencrypt((RREQ, NP), NU0) 

B. Resource Registration 
From location L0, U0 sends parent node P’s nonce NP and a 
request for resource registration RREQ to parent node P, 
encrypted with its own nonce NU0 and waits for 
acknowledgment RREQ_Ack from P: 

• U0�P : sencrypt((RREQ, NP), NU0) 

• P�U0: sencrypt((U0, RREQ_Ack), NP) 

Upon receiving P’s acknowledgment RREQ_Ack U0 sends to P 
its location L0 and the current timestamp T0, encrypted with its 
nonce NU0.  

• U0�P : sencrypt((L0, T0), NU0) 

P decrypts the message with U0’s nonce to retrieve L0 and T0, 
which it then uses to compute its resource identity ResourceID 
by encrypting L0, T0 and NU0 with its own nonce NP. 

P registers U0 as the owner of resource ResourceID, stores its 
identity ResourceID in persistent memory and sends 
ResourceID and confirmation of successful registration 
RREQ_Confirm to U0, encrypted with NP. 

• P�U0: sencrypt((RREQ, RREQ_Confirm, 
ResourceID), NP) 

U0 decrypts the message with NP to recover RREQ_Confirm 
and ResourceID, which it records as the identity of the newly 
registered resource.  

C. Child Node Addition 
As many child nodes Ci, i > 0 as are required may be added 

to a resource after its parent node P has been initialized with its 
secret identity ResourceID. Each child node Ci can be located 
anywhere a network connection can be established between 
itself and P. Any user Ux may attempt to add a child node Ci as 
follows: 
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Ux sends parent node P’s nonce NP and a reque
addition AREQ to parent node P, encrypted wi
NU0 and waits for acknowledgment AREQ_Ack

• Ux �P : sencrypt((AREQ, NP), NU

• P� Ux: sencrypt((Ux, AREQ_Ack)

Upon receiving P’s acknowledgment AREQ_A
the resource’s identity ResourceID encrypted
NUx. Ux also sends to P all the data necessary
new child node Ci. 

• Ux�P: sencrypt((ResourceID), N

• Ux�P: sencrypt((PermUxij=True
NUx), j > 0 for all commands j th
can execute, where PermUxij 
permission of user Ux to issue com
Actij is the action that child node
upon receiving command Cmdij. 

P decrypts the messages with Ux’s no
ResourceID and all node initialization data (
Actij), j > 0 and if Ux is the registered owne
then P generates a new random child node id
be the identity of the new child node Ci and i
all (PermUxij, Cmdij,, Actij), j > 0. 

P then sends ResourceID, cNodei and 
successful child node addition AREQ_Confirm
with NP. 

• P�Ux: sencrypt((AREQ, 
ResourceID, cNodei), NP) 

P also adds a row for each command Cmdij, j>0
access control matrix acMUij = [Ux,x>0
PermUxij,i>0,j>0   Cmdij,i>0, j>0]: 

[Ux      cNodei     PermUxij=True     Cmdij] 

For commands Cmdij, j=1,m P computes the
access control matrix acM'Uij by vertically co
[Ux      cNodei     PermUxij=True     Cmdij] to ac

  

Ux decrypts the message with NP to recover 
ResourceID and cNodei, which it records as th
new child node Ci.  

D. Child Node Deletion 
Any child node Ci may be deleted by the 

of the resource to which it belongs. It may n
any other user. Any user Ux may attempt to de
as follows: 

est for child node 
ith its own nonce 
k from P: 

Ux) 

), NP) 

Ack Ux sends to P 
d with its nonce 
y to initialize the 

NUx) 

e, Cmdij, Actij), 
hat child node Ci 
is the Boolean 

mmand Cmdij and 
e Ci will perform 

nce to retrieve 
(PermUxij, Cmdij,, 

er of ResourceID 
dentity cNodei to 
initializes Ci with 

confirmation of 
m to Ux, encrypted 

AREQ_Confirm, 

0 to the resource’s 
0   cNodei,i>0   

e resource’s new 
oncatenating rows 
cMUij as in Fig. 4. 

 
AREQ_Confirm, 

he identity of the 

registered owner 
not be deleted by 
elete a child node 

Ux sends parent node P’s nonce NP a
deletion DREQ to parent node P, en
NU0 and waits for acknowledgment D

• Ux �P : sencrypt((DRE

• P� Ux: sencrypt((Ux, D

Upon receiving P’s acknowledg
to P the resource’s identity Resourc
child node to be deleted cNodei, enc

• Ux�P: sencrypt((Resou

P decrypts the message with
ResourceID and cNodei, and deletes 
to resource ResourceID and Ux i
resource ResourceID. 

P removes all rows [X      =cNod
resource’s access control matrix acM

[X     =cNodei     X     X] = []. 

P then sends ResourceID, cNo
successful child node deletion 
encrypted with NP. 

• P�Ux: sencrypt((D
ResourceID, cNodei), N

Ux decrypts the message with NP t
ResourceID and cNodei, which it rec

E. Access Rights Modification 
Any user Ux may transfer all or

access rights to another user Uz s
permissions of both Ux and Uz. 

Rights transfers done on any g
affect Ux’s permissions PermUxij to i
that can be issued to child node Ci.
PermUzij to issue any given comma
will be updated by the request. Neit
owner of the resource to which child

User Ux may attempt to transfer 
permissions PermUxij for child node 

Ux sends parent node P’s nonce N
rights modification TREQ to parent
own nonce NU0 and waits for ac
from P: 

• Ux �P : sencrypt((TRE

• P� Ux: sencrypt((Ux, T

Upon receiving P’s acknowledgmen
the resource’s identity ResourceID
node to be affected by the transfer cN
the rights transfer is intended Uz, en
Ux also sends to P the j child node
node Ci to be affected by the t
permissions Rij for Uz to issue comm

• Ux�P: sencrypt((Resou

and a request for child node 
ncrypted with its own nonce 
DREQ_Ack from P: 

EQ, NP), NUx) 

DREQ_Ack), NP) 

gment DREQ_Ack Ux sends 
ceID and the identity of the 
rypted with its nonce NUx. 

urceID, cNodei), NUx) 

h Ux’s nonce to retrieve 
the node if cNodei belongs 

s the registered owner of 

dei     X     X] from the 
MUij. 

odei and confirmation of 
DREQ_Confirm to Ux, 

DREQ, DREQ_Confirm, 
NP) 

to recover DREQ_Confirm, 
cords as being deleted. 

r any subset of his resource 
subject to the prior access 

given child node Ci do not 
ssue any of the j commands 
 However, Uz’s permission 

and Cmdij to child node Ci 
ther Ux nor Uz has to be the 
d node Ci belongs. 

all or a subset of his access 
Ci to user Uz as follows: 

NP and a request for access 
t node P, encrypted with its 
cknowledgment TREQ_Ack 

EQ, NP), NUx) 

TREQ_Ack), NP) 

nt TREQ_Ack Ux sends to P 
D, the identity of the child 

Nodei and the user to which 
ncrypted with its nonce NUx. 
e commands Cmdij of child 
transfer and the requested 
mands Cmdij. 

urceID, cNodei , Uz), NUx) 
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• Ux�P: sencrypt((Rij, Cmdij), NU
commands j that child node Ci ca
Rij is the requested Boolean perm
to issue command Cmdij. 
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resource’s access control matrix acMUij: 
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Ux), j > 0 for all 
an execute, where 
mission of user Uz 

nce to retrieve 
torage all of Ux’s 
ermissions Zij for 
Uzij for Uz to issue 

, P updates the 
for all rows               

 =cNodei     P'Uzij    

commands Cmdij, 
s control matrix 
   cNodei     P'Uzij     

 

e commands to a 
revoked by the 

n a process called 
delete a user. A 

lows: 

request for user 
ith its own nonce 
k from P: 

Ux) 

), NP) 

SR_Ack Ux sends 
dentity cNodei of 
and the user to be 

Nodei, Uz), NUx) 

once to retrieve 
he user if cNodei 

registered owner 

X     X] from the 

P then sends ResourceID, cNode
successful user deletion DUSR_Con
NP. 

• P�Ux: sencrypt((D
ResourceID, cNodei, Uz

Ux decrypts the message with NP t
ResourceID, cNodei, and Uz and re
with regard to cNodei. 
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actuation ACTC to parent node P
nonce NU0 and waits for acknowledg

• Ux �P : sencrypt((ACT

• P� Ux: sencrypt((Ux, A

Upon receiving P’s acknowledg
to P the resource’s identity Resourc
of the child node to be actuated, en
Ux also sends to P one or more com
node Ci. 
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The protocol supports registration of new resources for 
access to users, addition and deletion of child nodes by 
resource owners, transfer of access rights between users, and 
revocation of users’ rights to issue commands to selected child 
nodes by the owner of the resource to which the child node 
belongs. Users may issue commands to any child node of any 
resource to which they have access permissions. 

Future work will be to develop a formal verification of the 
UPACS protocol, to verify the protocol’s ability to withstand 
various security attacks, and to implement the protocol as a 
proof of concept and demonstrate its capabilities in dealing 
with concurrency issues and solving known security problems. 
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