
Universal Physical Access Control System

Bassem Alhalabi, Clyde Carryl
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, Florida, USA

{ alhalabi, ccarryl} @fau.edu

Abstract—With the recent rapid increase in the number of
physical facilities and structures that need to be protected by
restricting physical access to them, there has been an explosion in
the number and type of physical access control systems being
deployed to protect them. However, these systems are quite
different from each other and there is no common standard that
provides for interoperability between the various systems. The
number and types of access devices being employed has grown
steadily, but the systems in which they are being used are
physically and technologically incompatible with each other.
Consequently, there is renewed interest within the research
community in developing a common universal system providing
physical resource access protection regardless of the type of
physical resource and where it is located. In this article we
propose the Universal Physical Access Control System (UPACS)
which provides a universal framework for controlling access to
physical resources. It provides for the use of a wide variety of
access devices and allows for both onsite and remote access. We
show how it can be used to control access to any type of resource,
including homes, vehicles and public infrastructure such as street
lights and traffic lights and industrial infrastructure such as
power plants. We also show how it can be implemented
regardless of the location of the owner of the physical resource
and the location of the resource relative to its users.

Keywords—Physical Access Control Systems, Remote Access,
UPACS, Asset Security.

I. INTRODUCTION
The many physical access control systems in use today are

incompatible with each other. Each system controls access to
the physical resources it is deployed to protect by providing a
proprietary interface between an access device and a
proprietary protecting device deployed at the physical
resource to be protected. And due to these limitations and the
recent proliferation of access control systems, there has been
renewed interest within the research community in developing
a universal access control system that functions across all
manufacturer and device type platforms and provides for the
seamless interchange of access control devices between access
control service providers while still ensuring secure access to
the protected physical resources.

To solve these problems we propose the Universal
Physical Access Control System (UPACS), an encryption-
enabled protocol which provides secure access to physical
assets, each protected by a single customizable access control
device. Access may be onsite or remote, and may utilize

several types of access devices, including mobile phones,
tablets, computers or any future devices that are capable of
communicating over a public network. Furthermore, the
number and types of physical resources it is capable of
protecting is boundless. Due to its open architecture, it will be
able to protect access to future physical assets with yet
unthought-of functionality. The protocol is applicable
anywhere access to physical facilities needs to be restricted,
for example power plants, chemical plants, public
infrastructure, as well as private property, including homes.
Critical switches, doors, windows, and lights can all be
protected, and sensor readings may also be received from
remote sensors.

Users determine the number and configuration of the
physical assets they may control, being able to easily add to
and delete devices from their portfolio. Users may also assign
or transfer access rights to other users, facilitating delegation
of management of access control activity. Users manage
access control by issuing commands to network nodes, one of
which is physically positioned at each device under
management. Depending on their requirements, users may
delegate all or a subset of their own access permissions
required to send commands to a node, and they can do so
without the need for supervisor interaction. Users with
appropriate permissions may easily commission and
decommission network nodes, and remove users with only
delegate rights as they require.

The remainder of this paper is structured as follows:
section II describes the evolution of physical access control
systems, highlighting the most important and relevant ones
inspiring the development of UPACS; section III describes the
UPACS framework and protocol suite in detail; and in section
IV is the conclusion and plans for future work.

II. CRITICAL REVIEW OF CURRENT PHYSICAL ACCESS
CONTROL SYSTEMS

Access control systems have been deployed in many
applications in everyday life. They are used to restrict access
to critical industrial plant facilities, for example an electrical
power grid. They are also used to control access to
government and military facilities, and are increasingly
employed to control access to residential appliances.

There are two broad categories of access control systems
[1]. Mechanical access control systems allow access only

2014 IEEE 14th International Conference on Bioinformatics and Bioengineering

978-1-4799-7502-0/14 $31.00 © 2014 IEEE

DOI 10.1109/BIBE.2014.64

386

when there is a mechanical match between an access device
and a blocking device. One simple example of such a system
is a lock and key or unlocking combination, with the lock
blocking access to protected resources until a key or unlocking
combination is used to gain access. Unfortunately, this type of
system is useful only when the user is physically present at the
blocking device along with the access device and cannot be
used remotely. Another limitation of mechanical access
control systems is that any required security enhancements to
the system may require costly replacement, reconfiguration or
re-issuance of all of the access devices, and as such may be
difficult to implement [1].

Unlike their mechanical counterparts, electronic access
control systems rely upon an electronic match between an
access device and the access control system. User
authentication is performed by means of an electronic
authentication protocol, and can be done either locally or
remotely. Compared with mechanical systems, such systems
are more suited to rapid adaptation to meet changing
deployment requirements. As a consequence, electronic access
control systems have evolved much more rapidly than their
mechanical counterparts, and have benefitted from the
development of several electronic authentication protocols.

A. Electronic Authentication Protocols
Currently the four most technologically important

categories of electronic authentication protocols are those
based on cryptography, biometrics, Physical Unclonable
Functions (PUFs), and access cards. Each class of protocol
makes use of a secret key or access process by which a user
can gain access to protected resources. However, as with
mechanical access control systems, there are strengths and
weaknesses inherent in each type of approach. In particular, it
is easy to understand how compromise of the access key could
jeopardize the effectiveness of the protocol, though it must be
noted that this is less of a risk factor with regard to biometric
protocols.

Cryptography-based Protocols: Cryptography uses keys
to provide secure communication between two entities. There
are two categories of cryptographic protocols: symmetric
protocols and asymmetric protocols.

Symmetric cryptographic protocols use a single key for
both encryption and decryption. Two well-known examples of
symmetric cryptographic protocols are the Data Encryption
Standard (DES) and Advanced Encryption Standard (AES)
protocols. Once adopted as the United States federal
government standard for exchange of sensitive documents,
DES is now considered to be no longer secure [2] due to its
56-bit key size limitation. It has since been replaced by AES,
which allows key sizes up to 256 bits. However, even AES is
not as secure as it once was as available computing power that
can be used to attack systems protected by AES grows sharply
[2].

Asymmetric cryptographic protocols use a public key and
a private key to provide secure communication between two
entities. The public key is used by a sender to encrypt
messages intended for a chosen recipient, and the private key
is known only by the intended recipient, who uses it to decrypt

messages it receives that were encrypted using its published
public key. Examples of asymmetric cryptographic protocols
are RSA (named after its inventors Ron Rivest, Adi Shamir
and Leonard Adleman), Diffie-Hellman with the Digital
Signature Algorithm (DH/DSA), and Elliptic Curve
Cryptography (ECC).

RSA encrypts messages using a public key algorithm
based on the product of two very large prime numbers, and
decrypts messages using a private key algorithm based on the
two prime numbers used to create the associated public key
[2]. Due to the difficulty of factoring the product of two very
large prime numbers to recover the factors given only the
product, RSA has proven to be a very secure encryption
protocol. However, increases in computer processing power
used by attackers require explosive growth in RSA key sizes
in order to provide the same level of security. Diffie-Hellman
with the Digital Signature Algorithm (DH/DSA) is an
improvement on RSA and achieves its strength from the
difficulty of solving the discrete logarithm problem. DH/DSA
computes a function y = (gx)mod p, where p is a very large
prime number and g and x are smaller than p. Encryption
using public key y and decryption using private key x are done
by solving the (tractable) exponentiation problem. However,
unauthorized decryption requires solving the discrete
logarithm problem which is intractable for very large p [2],
since although y is known, x is not. Unfortunately, as with
RSA, increases in compute power used by attackers requires
explosive growth in key sizes in order to maintain the same
level of security.

ECC is an improvement upon DH/DSA that also requires
growth in key sizes in order to keep up with increased attacker
computing power, but more modest growth than required by
DH/DSA [2]. It is similar to DH/DSA in that successful
attacks require solving an intractable discrete logarithm
problem. However, the prime field upon which p is defined is
a set of points on an elliptical curve, with specific rules as to
how to get from any point on the curve to the next point in
sequence. ECC defines points P and Q on an elliptical curve
y2 = x3 + ax + b such that Q = kP, where Q is a public key and
k is its corresponding private key. Encryption using public key
Q and decryption using private key k require solving a
(tractable) elliptic curve multiplication problem. However,
unauthorized decryption requires solving the elliptic curve
discrete logarithm problem, which is intractable for very large
p [2] since although Q is known, k is not. However, although
the required growth in key sizes to keep pace with the growth
in available attacker computing power is not as steep as for
DH/DSA, it is still substantial and represents a limitation of
even this class of cryptographic protocols.

Biometrics-based Protocols: Biometric authentication
uses unique characteristics of individual users to identify and
authenticate them to the system. Among the more commonly
used identification features are the user’s iris, retina,
fingerprint, palm print, voice, face or signature, as these are
considered to be unique for each person [3]. Other features
studied include peculiarities in eye movements [16] and
electroencephalogram (EEG) signals [15]. However, to avoid
security breaches due to the unauthorized imitation of one of
these features, it is common for biometrics-based protocols to

387

employ multi-factor authentication, basing classification on
more than one identification feature [3], for example voice and
fingerprint.

However, biometrics-based protocols suffer from the
limitation that access privileges cannot be transferred [1]
among users, and in addition they are exposed to security
breaches if the reference database is compromised.

Chip-level Authentication Protocols: Often access
devices are identified and authenticated using protocols based
on an encrypted key digitally stored in non-volatile memory.
Such protocols are able to authenticate a device to the system if
its stored key is present in the system’s reference database.
However, digitally stored keys are vulnerable to security
breaches, and protocols based on encryption are impractical for
power-constrained devices [4]. To solve these problems,
devices can be uniquely identified by employing a Physical
Unclonable Function (PUF) [4] [11] [12] [14]. A PUF is a
function determined from the random peculiarities of the
fabrication characteristics of individual integrated circuits, for
example transistor delay signatures along specific paths [4]. It
is known that when integrated circuit chips are fabricated, the
timing delays along wiring and transistor paths through the
integrated circuit are unique for each IC, and as such represent
a unique identifier for each IC. A PUF creates a set of
challenges and responses that comprise a lock to which there is
only one key: the specific IC for which the lock was created,
thus allowing authentication of only the correct device.

However, PUFs are susceptible to bit-flipping [17] and
device aging [13]. Timing differences between signals
propagated through the IC along two paths of similar length
sometimes change such that the slower path becomes faster
than the previously faster path, resulting in a phenomenon
known as bit-flipping. As a consequence, the correctness of
operation of any PUFs built using the paths in question will be
adversely affected [17]. In addition, as the IC gets older
propagation timings along various paths may change, thereby
affecting PUF accuracy [13]. Yet another limitation of PUF
security is that it is vulnerable to compromise in the event of
unauthorized access to the PUF challenge-response pair
reference database, or to eavesdropping of the challenge-
response pairs exchanged between legitimate users and the
system [11].

Access Card Authentication Protocols: Access card
authentication protocols use identification (ID) information
stored on an access card and an authentication algorithm to
determine if the access card with the given ID is allowed
access to the requested resources. They may also determine the
user’s appropriate level of access to each resource and restrict
access accordingly. An acknowledged best practice is to avoid
storing sensitive access control information (such as user
passwords) on the server but to store any required information
on the card itself, and several protocols have been designed
around this principle [6] [7] [18]. And to further enhance
security, some access card authentication protocols employ
multi-factor authentication [8] [9] [19], combining card
authentication with other authentication factors, such as a
user’s password. In general, access control protocols can be

segmented into three phases: the Registration Phase, the
Access Request Phase, and the Verification Phase [5].

Registration Phase: In the registration phase, the user
submits his ID and password to the server, which then creates
an access control list with appropriate permissions for each
server resource and stores it along with a hash function on a
new access card to be issued to the user.

Access Request Phase: In the access request phase, the user
requests access by presenting his access card to the server
along with his ID and password, and the access card sends a
request to the server for the pre-assigned access levels.

Verification Phase: In the verification phase, the server
verifies the validity of the user and request, verifies that the
requested resource access levels are as pre-assigned, and
approves/denies the request as appropriate. If the request is
approved, the server sends the approval response to the card,
which then attempts to verify the validity of the approval and
the server.

A security analysis reveals the system’s vulnerability to
various forms of attack, and its ability to protect the privacy of
communications between the server and users, determined by
whether or not messages between the server and users are
visible to others. There are several known types of attack.

Reflection Attack: A reflection attack occurs when an
adversary intercepts a legitimate user’s messages and
impersonates the server.

Parallel Session Attack: A parallel session attack occurs
when an adversary intercepts messages from the server to a
legitimate user and uses the user’s credentials to impersonate
the user and begin a new session with the server.

Privilege Elevation Attack: A user with previously valid
but now revoked resource access levels may attempt to access
resources at the revoked access levels.

Replay Attack: An adversary may replay a message
between the server and a legitimate user.

Man-in-the-Middle Attack: An adversary may intercept and
modify messages between the server and a legitimate user.

TABLE I. UPACS PROTOCOL

Process Purpose

Resource Registration Register a new resource

Child Node Addition Add a child node to control an
individual device

Child Node Deletion Delete a child node that is no longer
needed

Access Rights Modification Assign all or a subset of a user’s
access rights

User Deletion Delete a user

Resource Actuation Actuate a physical device

388

III. UPACS FRAMEWORK AND SYSTEM DESCRIPTION
UPACS is a communication protocol providing secure

access to a wide variety of physical devices and the ability to
control the behavior of those devices over an unsecure
network, such as the internet. As such it provides secure access
to physical devices from anywhere there is an internet
connection. It is made up of four main components: a user
interface from which requests to interact with remote physical
devices can be made; a resource controller known as a parent
node which is accessible to the user over any public or private
network; local device controllers known as child nodes, that
are placed on location wherever a physical device is to be
accessed and manipulated; and a trusted key server capable of
administering cryptographic key management over the
network. Protocol processes are designed to withstand network
attacks enabled by the use of public untrusted networks in
fulfilling the requirements for users to interact with remote
physical resources, which may be any assortment of homes,
physical plants, public infrastructure, or any other physical
facilities for which secure remote access is required.

Messages exchanged between protocol participants are sent

over a public channel, thereby allowing an attacker to freely

inspect and attempt to manipulate them. The protocol uses
symmetric and asymmetric encryption techniques to protect the
secrecy of these messages, with a trusted key server tasked
with the responsibility of facilitating mutual authentication of
the other protocol participants.

In the execution of the protocol, users request services from
parent nodes, each of which controls access to one or more
child nodes. Each child node protects access to a single
physical device, and authorized users may send commands to
the child nodes to control the behavior of the devices under
their control. A child node may be deployed anywhere on the
network, since the protocol is not limited in terms of
geographical placement of managed resources. Examples of
physical devices that may be controlled by a child node include
doors, windows, lights, medical devices, sensors, chemical
devices, nuclear devices, and so on.

Parent nodes require a CPU, a real time clock (RTC) to
provide time stamps, a GPS to provide location, flash memory
to provide non-volatile storage of user and parent identities and
nonces as well as device commands and user permissions, a
near field communication (NFC) component to allow secure
configuration of child nodes, and a GSM module for global
network identity. A child node requires only a CPU, RTC and a
small flash memory to store their commands and associated
responses. Figure 1 depicts a parent node and Figure 2 depicts
a child node. Figure 3 models a building being protected by a
system of n UPACS child nodes.

The process of providing secure access to a physical
resource using the Universal Physical Access Control System
begins with the registration of the physical resource. We use
the terms resource and physical device such that a resource is
the collection of physical devices associated with a single
parent node. Resource registration assigns a resource identity
to the resource’s parent node and is necessary before any of the
other protocol processes take place. These processes are listed
in Table I.

The owner of a resource registers its parent node P using
the Resource Registration process, and subsequently may add
any required child nodes Ci, i > 0 using the Child Node Addition
process. There is no limit to the number of child nodes that
may be added to a resource. Child nodes no longer needed may
be deleted using the Child Node Deletion process. Only
resource owners may add or delete child nodes.

Users may delegate or assign resource access rights to other
users by means of the Access Rights Modification process. A
user does not have to be the resource owner to transfer or
delegate child node access rights to another user. Any user may
initiate the Access Rights Modification process and transfer all
or a subset of his access permissions to another user without
the need for supervisory interaction. The protocol prevents
Elevation of Privilege attacks, preventing users from
‘transferring’ access permissions greater than their own.

Users no longer required or allowed to actuate a given
device may be deleted by means of the User Deletion process.
Note that deletion of a user applies only to the specific child
node from which they have been deleted, and does not affect
that user’s ability to access any other child nodes that they have

389

been assigned to manage. This allows users to be re-assigned to
manage new devices as needed. Only resource owners are
authorized to delete users.

The physical devices that are controlled by individual child
nodes may be actuated by authorized users using the Child
Node Actuation process. A user may receive node actuation
permissions on a per command basis either from the resource
owner or from another user with approved access to the same
command for the same child node.

The Universal Physical Access Control Protocol is

extendible, allowing for an unlimited number and type of
devices that could be controlled, and for the configuration of
each child node to satisfy the unique requirements of the
physical device that it is tasked to control, thereby ensuring
sustained adequacy in meeting the requirements necessitated
by future technological development. Prior to the addition of a
child node, the node is a virgin embedded device capable of
being custom configured to behave as required by the creating
user. The child node addition process could then be used to
download a custom state machine to the device, which allows
the protocol to be used to accommodate future technological
requirements.

A. Mutual Authentication BetweenUser And Parent
The resource owner U0 (which could be a person or a

process) has an asymmetric key pair: a secret key skU0 and a
public key pk(sKU0). Similarly the resource’s parent node P
has an asymmetric key pair: secret key skP, and public key
pk(skP) which is known to U0.

Prior to executing any of the service aspects of the protocol,
users and parents have to be mutually authenticated to each
other, making use of the trusted key server S. To accomplish
this, U0 first sends a request for P’s public key to key server S.

• U0�S : request(pk(skP))

S returns P’s identity and public key, signed with its secret
key skS:

• S� U0 : sign((P , pk(skP)), skS)

U0 generates a fresh nonce NU0 and sends its identity and
nonce to P, encrypted with P,’s public key.

• U0�P : encrypt((U0, NU0), pk(skP))

P decrypts the message to recover U0 and NU0 and sends a
request to key server S for U0’s public key:

• P�S : request(pk(sk U0))

S returns U0’s identity and public key, signed with its secret
key skS:

• S� U0 : sign((U0 , pk(sk U0)), skS)

P generates a fresh nonce NP and sends NP, NU0 and its
identity to U0, encrypted with U0’s public key:

• P�U0 : encrypt((NP, NU0, P), pk(skU0))

U0 decrypts the message and if the message contains its
nonce it knows it is communicating with the right resource
parent. It then sends back P’s nonce NP along with its request
for additional protocol services, encrypted with its own nonce
NU0. When P receives and decrypts this message, if the
message contains its nonce NP then mutual authentication is
complete and P will process the U0’s request:

• U0�P : sencrypt((RREQ, NP), NU0)

B. Resource Registration
From location L0, U0 sends parent node P’s nonce NP and a
request for resource registration RREQ to parent node P,
encrypted with its own nonce NU0 and waits for
acknowledgment RREQ_Ack from P:

• U0�P : sencrypt((RREQ, NP), NU0)

• P�U0: sencrypt((U0, RREQ_Ack), NP)

Upon receiving P’s acknowledgment RREQ_Ack U0 sends to P
its location L0 and the current timestamp T0, encrypted with its
nonce NU0.

• U0�P : sencrypt((L0, T0), NU0)

P decrypts the message with U0’s nonce to retrieve L0 and T0,
which it then uses to compute its resource identity ResourceID
by encrypting L0, T0 and NU0 with its own nonce NP.

P registers U0 as the owner of resource ResourceID, stores its
identity ResourceID in persistent memory and sends
ResourceID and confirmation of successful registration
RREQ_Confirm to U0, encrypted with NP.

• P�U0: sencrypt((RREQ, RREQ_Confirm,
ResourceID), NP)

U0 decrypts the message with NP to recover RREQ_Confirm
and ResourceID, which it records as the identity of the newly
registered resource.

C. Child Node Addition
As many child nodes Ci, i > 0 as are required may be added

to a resource after its parent node P has been initialized with its
secret identity ResourceID. Each child node Ci can be located
anywhere a network connection can be established between
itself and P. Any user Ux may attempt to add a child node Ci as
follows:

390

Ux sends parent node P’s nonce NP and a reque
addition AREQ to parent node P, encrypted wi
NU0 and waits for acknowledgment AREQ_Ack

• Ux �P : sencrypt((AREQ, NP), NU

• P� Ux: sencrypt((Ux, AREQ_Ack)

Upon receiving P’s acknowledgment AREQ_A
the resource’s identity ResourceID encrypted
NUx. Ux also sends to P all the data necessary
new child node Ci.

• Ux�P: sencrypt((ResourceID), N

• Ux�P: sencrypt((PermUxij=True
NUx), j > 0 for all commands j th
can execute, where PermUxij
permission of user Ux to issue com
Actij is the action that child node
upon receiving command Cmdij.

P decrypts the messages with Ux’s no
ResourceID and all node initialization data (
Actij), j > 0 and if Ux is the registered owne
then P generates a new random child node id
be the identity of the new child node Ci and i
all (PermUxij, Cmdij,, Actij), j > 0.

P then sends ResourceID, cNodei and
successful child node addition AREQ_Confirm
with NP.

• P�Ux: sencrypt((AREQ,
ResourceID, cNodei), NP)

P also adds a row for each command Cmdij, j>0
access control matrix acMUij = [Ux,x>0
PermUxij,i>0,j>0 Cmdij,i>0, j>0]:

[Ux cNodei PermUxij=True Cmdij]

For commands Cmdij, j=1,m P computes the
access control matrix acM'Uij by vertically co
[Ux cNodei PermUxij=True Cmdij] to ac

Ux decrypts the message with NP to recover
ResourceID and cNodei, which it records as th
new child node Ci.

D. Child Node Deletion
Any child node Ci may be deleted by the

of the resource to which it belongs. It may n
any other user. Any user Ux may attempt to de
as follows:

est for child node
ith its own nonce
k from P:

Ux)

), NP)

Ack Ux sends to P
d with its nonce
y to initialize the

NUx)

e, Cmdij, Actij),
hat child node Ci
is the Boolean

mmand Cmdij and
e Ci will perform

nce to retrieve
(PermUxij, Cmdij,,

er of ResourceID
dentity cNodei to
initializes Ci with

confirmation of
m to Ux, encrypted

AREQ_Confirm,

0 to the resource’s
0 cNodei,i>0

e resource’s new
oncatenating rows
cMUij as in Fig. 4.

AREQ_Confirm,

he identity of the

registered owner
not be deleted by
elete a child node

Ux sends parent node P’s nonce NP a
deletion DREQ to parent node P, en
NU0 and waits for acknowledgment D

• Ux �P : sencrypt((DRE

• P� Ux: sencrypt((Ux, D

Upon receiving P’s acknowledg
to P the resource’s identity Resourc
child node to be deleted cNodei, enc

• Ux�P: sencrypt((Resou

P decrypts the message with
ResourceID and cNodei, and deletes
to resource ResourceID and Ux i
resource ResourceID.

P removes all rows [X =cNod
resource’s access control matrix acM

[X =cNodei X X] = [].

P then sends ResourceID, cNo
successful child node deletion
encrypted with NP.

• P�Ux: sencrypt((D
ResourceID, cNodei), N

Ux decrypts the message with NP t
ResourceID and cNodei, which it rec

E. Access Rights Modification
Any user Ux may transfer all or

access rights to another user Uz s
permissions of both Ux and Uz.

Rights transfers done on any g
affect Ux’s permissions PermUxij to i
that can be issued to child node Ci.
PermUzij to issue any given comma
will be updated by the request. Neit
owner of the resource to which child

User Ux may attempt to transfer
permissions PermUxij for child node

Ux sends parent node P’s nonce N
rights modification TREQ to parent
own nonce NU0 and waits for ac
from P:

• Ux �P : sencrypt((TRE

• P� Ux: sencrypt((Ux, T

Upon receiving P’s acknowledgmen
the resource’s identity ResourceID
node to be affected by the transfer cN
the rights transfer is intended Uz, en
Ux also sends to P the j child node
node Ci to be affected by the t
permissions Rij for Uz to issue comm

• Ux�P: sencrypt((Resou

and a request for child node
ncrypted with its own nonce
DREQ_Ack from P:

EQ, NP), NUx)

DREQ_Ack), NP)

gment DREQ_Ack Ux sends
ceID and the identity of the
rypted with its nonce NUx.

urceID, cNodei), NUx)

h Ux’s nonce to retrieve
the node if cNodei belongs

s the registered owner of

dei X X] from the
MUij.

odei and confirmation of
DREQ_Confirm to Ux,

DREQ, DREQ_Confirm,
NP)

to recover DREQ_Confirm,
cords as being deleted.

r any subset of his resource
subject to the prior access

given child node Ci do not
ssue any of the j commands
 However, Uz’s permission

and Cmdij to child node Ci
ther Ux nor Uz has to be the
d node Ci belongs.

all or a subset of his access
Ci to user Uz as follows:

NP and a request for access
t node P, encrypted with its
cknowledgment TREQ_Ack

EQ, NP), NUx)

TREQ_Ack), NP)

nt TREQ_Ack Ux sends to P
D, the identity of the child

Nodei and the user to which
ncrypted with its nonce NUx.
e commands Cmdij of child
transfer and the requested
mands Cmdij.

urceID, cNodei , Uz), NUx)

391

• Ux�P: sencrypt((Rij, Cmdij), NU
commands j that child node Ci ca
Rij is the requested Boolean perm
to issue command Cmdij.

P decrypts the message with Ux’s non
ResourceID, cNodei, and Uz, retrieves from st
cNodei permissions Yij and any prior Uz pe
cNodei, and computes the new permissions P'U
commands Cmdij to Ci as:

 P'Uzij = Yij Rij + Zij

If Uz had prior Ci access permissions Zij,
resource’s access control matrix acMUij
[=Uz =cNodei Zij = Cmdij] to [=Uz
= Cmdij].

If Uz had no prior Ci access permissions, for c
j=1,m P computes the resource’s new acces
acM'Uij by vertically concatenating rows [Uz
Cmdij] to acMUij as in Fig.5.

F. User Deletion
The permissions of any user Uz to issue

child node Ci with identity cNodei may be
owner of the resource to which Ci belongs in
user deletion. Only the resource owner may
resource owner Ux may delete a user Uz as foll

Ux sends parent node P’s nonce NP and a
deletion DUSR to parent node P, encrypted wi
NU0 and waits for acknowledgment DUSR_Ack

• Ux �P : sencrypt((DUSR, NP), NU

• P� Ux: sencrypt((Ux, DUSR_Ack)

Upon receiving P’s acknowledgment DUS
to P the resource’s identity ResourceID, the id
the child node to be affected by the deletion, a
deleted Uz, encrypted with its nonce NUx.

• Ux�P: sencrypt((ResourceID, cN

P decrypts the message with Ux’s no
ResourceID, cNodei, and Uz, and deletes th
belongs to resource ResourceID and Ux is the
of resource ResourceID.

P removes all rows [=Uz =cNodei X
resource’s access control matrix acMUij:

[=Uz =cNodei X X] = [].

Ux), j > 0 for all
an execute, where
mission of user Uz

nce to retrieve
torage all of Ux’s
ermissions Zij for
Uzij for Uz to issue

, P updates the
for all rows

 =cNodei P'Uzij

commands Cmdij,
s control matrix
 cNodei P'Uzij

e commands to a
revoked by the

n a process called
delete a user. A

lows:

request for user
ith its own nonce
k from P:

Ux)

), NP)

SR_Ack Ux sends
dentity cNodei of
and the user to be

Nodei, Uz), NUx)

once to retrieve
he user if cNodei

registered owner

X X] from the

P then sends ResourceID, cNode
successful user deletion DUSR_Con
NP.

• P�Ux: sencrypt((D
ResourceID, cNodei, Uz

Ux decrypts the message with NP t
ResourceID, cNodei, and Uz and re
with regard to cNodei.

G. Resource Actuation
Any user Ux with may issue com

node Ci and Ci will process the com
issue command Cmdij is set to Tru
commands to a child node is as follo

Ux sends parent node P’s nonce NP a
actuation ACTC to parent node P
nonce NU0 and waits for acknowledg

• Ux �P : sencrypt((ACT

• P� Ux: sencrypt((Ux, A

Upon receiving P’s acknowledg
to P the resource’s identity Resourc
of the child node to be actuated, en
Ux also sends to P one or more com
node Ci.

• Ux�P: sencrypt((Resou

• Ux�P: sencrypt((CmdR

P decrypts the messages with
ResourceID, cNodei and all com
CmdReqij, j > 0 and for each comma
a valid command for node cNodei
True for command CmdReqij then P
to cNodei for execution.

P then sends ResourceID, cNo
successful command delivery ACTC
with NP.

• P�Ux: sencrypt((A
ResourceID, cNodei), N

Ux decrypts the message with NP t
ResourceID and cNodei.

IV. CONCLU

The Universal Physical Access
enables secure access to physical
protected with access restrictions.

Physical devices are actuated
which themselves are protected fro
UPACS parent nodes. Both parent n
be located anywhere there is networ

The protocol protects message
exchanged over an untrusted comm
users and parent nodes, both of whic
a trusted key server for mutual authe

i, Uz and confirmation of
nfirm to Ux, encrypted with

DUSR, DUSR_Confirm,

z), NP)

to recover DUSR_Confirm,
ecords Uz as being deleted

mmands Cmdij to any child
mmand if Ux’s permission to
ue. The process for issuing
ows:

and a request for child node
P, encrypted with its own
gment ACTC_Ack from P:

TC, NP), NUx)

ACTC _Ack), NP)

gment ACTC_Ack Ux sends
eID and the identity cNodei

ncrypted with its nonce NUx.
mmands CmdReqij for child

urceID, cNodei), NUx)

Reqij), NUx), j > 0

Ux’s nonce to retrieve
mmands to be executed

and CmdReqij if CmdReqij is
and Ux has permission of

P sends command CmdReqij

odei and confirmation of
C_Confirm to Ux, encrypted

ACTC, ACTC_Confirm,
NP)

to recover ACTC_Confirm,

USION
Control protocol (UPACS)
resources that need to be

by UPACS child nodes,
om unauthorized access by
nodes and child nodes may

rk access.

es and secret information
munication channel between
ch rely upon the services of
entication.

392

The protocol supports registration of new resources for
access to users, addition and deletion of child nodes by
resource owners, transfer of access rights between users, and
revocation of users’ rights to issue commands to selected child
nodes by the owner of the resource to which the child node
belongs. Users may issue commands to any child node of any
resource to which they have access permissions.

Future work will be to develop a formal verification of the
UPACS protocol, to verify the protocol’s ability to withstand
various security attacks, and to implement the protocol as a
proof of concept and demonstrate its capabilities in dealing
with concurrency issues and solving known security problems.

REFERENCES
[1] Y. Shu, Y. Gu and J. Chen, "Sensory-data-enhanced authentication for

RFID-based access control systems," in Mobile Adhoc and Sensor
Systems (MASS), 2012 IEEE 9th International Conference on, 2012.

[2] Certicom, "An Elliptic Curve Cryptography (ECC) Primer," June 2004.
[Online]. Available: http://www.certicom.com/pdfs/WP-
ECCprimer_login.pdf. [Accessed February 2014].

[3] A. Eng and L. Wahsheh, "Look into My Eyes: A Survey of Biometric
Security," in Information Technology: New Generations (ITNG), 2013
Tenth International Conference on, 2013.

[4] G. Suh and S. Devadas, "Physical Unclonable Functions for Device
Authentication and Secret Key Generation," in Design Automation
Conference, 2007. DAC '07. 44th ACM/IEEE, 2007.

[5] H.-Y. Chien and J.-K. Jan, "An integrated user authentication and access
control scheme without public key cryptography," in Security
Technology, 2003. Proceedings. IEEE 37th Annual 2003 International
Carnahan Conference on, 2003.

[6] C. Yang, W. Ma, B. Huang and X. Wang, "Password-Based Access
Control Scheme with Remote User Authentication Using Smart Cards,"
in Advanced Information Networking and Applications Workshops,
2007, AINAW '07. 21st International Conference on, 2007.

[7] C. Yang, Z. Jiang and J. Yang, "Novel Access Control Scheme with
User Authentication Using Smart Cards," in Computational Science and
Optimization (CSO), 2010 Third International Joint Conference on,
2010.

[8] H. Tsague, F. Nelwamondo and N. Msimang, "An Advanced Mutual-
authentication Algorithm Using 3DES for Smart Card Systems," in
Cloud and Green Computing (CGC), 2012 Second International
Conference on, 2012.

[9] Y. Shu, Y. Gu and J. Chen, "Dynamic Authentication with Sensory
Information for the Access Control Systems," Parallel and Distributed
Systems, IEEE Transactions on, vol. 25, no. 2, pp. 427-436, Feb 2014.

[10] G. Shen and B. Liu, "Research on Embedding ECC into RFID
Authentication Protocol," in Trust, Security and Privacy in Computing
and Communications (TrustCom), 2012 IEEE 11th International
Conference on, 2012.

[11] M. Rostami, M. Majzoobi, F. Koushanfar, D. Wallach and S. Devadas,
Robust and Reverse-Engineering Resilient PUF Authentication and Key-
Exchange by Substring Matching, vol. PP, 2014, pp. 1-1.

[12] K. Rosenfeld, E. Gavas and R. Karri, "Sensor physical unclonable
functions," in Hardware-Oriented Security and Trust (HOST), 2010
IEEE International Symposium on, 2010.

[13] A. Maiti, L. McDougall and P. Schaumont, "The Impact of Aging on an
FPGA-Based Physical Unclonable Function," in Field Programmable
Logic and Applications (FPL), 2011 International Conference on, 2011.

[14] J. Lee, D. Lim, B. Gassend, G. Suh, M. van Dijk and S. Devadas, "A
technique to build a secret key in integrated circuits for identification
and authentication applications," in VLSI Circuits, 2004. Digest of
Technical Papers. 2004 Symposium on, 2004.

[15] H. J. Lee, H. S. Kim and K. S. Park, "A study on the reproducibility of
biometric authentication based on electroencephalogram (EEG)," in

Neural Engineering (NER), 2013 6th International IEEE/EMBS
Conference on, 2013.

[16] O. V. Komogortsev and C. D. Holland, "Biometric authentication via
complex oculomotor behavior," in Biometrics: Theory, Applications and
Systems (BTAS), 2013 IEEE Sixth International Conference on, 2013.

[17] S. Eiroa, J. Castro, M. Martinez-Rodriguez, E. Tena, P. Brox and I.
Baturone, "Reducing bit flipping problems in SRAM physical
unclonable functions for chip identification," in Electronics, Circuits
and Systems (ICECS), 2012 19th IEEE International Conference on,
2012.

[18] Y.-C. Chen and L.-Y. Yeh, "An Efficient Authentication and Access
Control Scheme Using Smart Cards," in Parallel and Distributed
Systems, 2005. Proceedings. 11th International Conference on, 2005.

[19] F. Bhutta, A. Ghafoor and S. Sultan, "Smart phone based authentication
and authorization protocol for SPACS," in High Capacity Optical
Networks and Enabling Technologies (HONET), 2012 9th International
Conference on, 2012.

BIOGRAPHY:
Clyde Carryl received a B.S. in
electrical engineering from Howard
University and a M.S. in computer
engineering from Florida Atlantic
University. He is currently working
towards the Ph.D. degree in computer
engineering at Florida Atlantic
University. His research interests

include physical access control systems, embedded systems
security, software defined networking security, and dedicated
short-range communications. He is a member of the Tau Beta
Pi Engineering Honor Society and IEEE.

Dr. Bassem Alhalabi’s primary
research is the development of
pragmatic industrial, consumer,
medical, and educational systems with
emphasis on Embedded Systems,
Web-based and Smart Controls, and
Distance Education & Remote Labs.
He Co-founded the CADET research
center in 1999, and has been co-

directing/ directing it since. Through his private consulting
company, Dr. Alhalabi works with inventors on their
feasibility study, design specification, system architecture and
integration, prototypes and proof of concepts, and design for
production. Dr. Alhalabi received a BS and an MS in electrical
engineering from Ohio University and Purdue University,
respectively, and an MS and a PhD in computer engineering
from the University of Louisiana at Lafayette. He holds a US
patent and others are pending. He is a member of IEEE and
various other professional and honor organization, and a
recipient of various academic awards.

393

