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Abstract—Bioinformatics datasets have historically been
difficult to work with. However, within machine learning,
there is a potentially effective tool to combat such prob-
lems: ensemble learning. Ensemble learning generates a
series of models and combines their results to make a
single decision. This process has the benefit of utilizing the
power of multiple models but the overhead of having to
compute the multiple models. Thus, we must ask whether
the benefits outweigh the detriments. In this study, we
seek to determine if the ensemble learning technique
Select-Bagging improves classification results over feature
selection on the training dataset followed by classification
(denoted as FS-Classifier in this work) on a series of bal-
anced bioinformatics datasets. We test the two approaches
with two filter-based feature rankers, four feature subset
sizes and the Naı̈ve Bayes classifier. Our results show that
Select-Bagging clearly outperforms FS-Classifier for nearly
all scenarios. Subsequent statistical analysis shows that the
increase in performance generated by Select-Bagging is
statistically significantly better than FS-Classifier. There-
fore, we can state that the inclusion of Select-Bagging is
beneficial to the classification performance of models built
on high-dimensional and balanced bioinformatics datasets
and should be implemented. To our knowledge this is the
first study which looks at the effectiveness of bagging in
conjunction with internal feature selection for balanced
bioinformatics datasets.

Keywords-high-dimensionality; ensemble; bagging; fea-
ture selection;

I. INTRODUCTION

Bioinformatics datasets have a number of inherent

problems, such as high-dimensionality (having a large

number of features per instance), noisy data (errors in

the datasets themselves), and difficult to learn class

boundaries which are challenges for researchers to over-

come. Commonly, techniques from the domain of ma-

chine learning have been utilized of multiple purposes

including reducing the dimensionality of the datasets

and building inductive models of making decision on

new data. In particular there is a subset of techniques

which can potentially powerful tool for bioinformatics:

ensemble learning.

Ensemble classification is the process of combining

the results of multiple related models into a single

decision. There are a number of benefits associated with

ensemble classification including, reduced bias, being

less prone to overfitting, and improved classification

performance. Additionally, ensemble classification is a

very diverse area of study as many of the ensemble

techniques can be utilized with any number of base

classifiers and data pre-processing techniques.

One popular ensemble technique is bagging. The basic

principle of bagging is to take a random sample of

instances from the dataset with replacement so that the

new dataset has the same size of the original training

dataset. Steps can also be taken (as is done in this work)

to preserve the class distribution of the original training

dataset. A model is built from this new dataset and a

decision is found. This process is repeated multiple times

and the results of the models are aggregated into a single

decision.

As a result of the inherent high-dimensionality of

many bioinformatics datasets, it has become necessary

to include dimensionality-reducing techniques such as

feature (gene) selection, a process of choosing an op-

timum subset of features to build subsequent models.

However, within the ensemble classification method, fea-

ture selection should be included in all iterations of the

ensemble. In this paper we focus on a technique called

Select-Bagging which incorporates feature selection into

every iteration of the bagging algorithm. We test Select-

Bagging against feature selection on the training dataset

followed by classification (denoted as FS-Classifier) on

a series of seven high-dimensional balanced (each class

having a similar number of instances in the dataset)
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bioinformatics datasets. Additionally we use two filter-

based feature rankers, four feature subset sizes, and the

Naı̈ve Bayes classifier when performing our experiments.

The results show that Select-Bagging, on average,

outperforms FS-Classifier for all feature ranking tech-

niques and feature subset sizes. Additionally, when

looking at the datasets individually, in a majority of

cases Select-Bagging outperforms FS-Classifier for both

feature rankers. Statistical analysis confirms that the

increase in classification performance by Select-Bagging

is a significant increase. Therefore, it is our recommen-

dation to use Select-Bagging over FS-Classifier.

The rest of the paper is organized as follows. Sec-

tion II contains a disscussion of previous research that

relates to this study. Section III describes the process

of both Select-Bagging and FS-Classifier. Section IV

presents the specific process by which our experiments

are conducted. Section V contains the results of our work

along with a discussion of the results. Lastly, Section VI

presents our conclusion and potential future avenues of

research.

II. RELATED WORK

Bioinformatics datasets frequently contain challenges

such as high-dimensionality, noisy data, and difficult

to learn class boundaries which make it necessary for

advanced data-mining techniques to be implemented [9].

In particular, ensemble learning is an effective approach

for increasing the classification performance for chal-

lenging datasets. These techniques (e.g., bagging) seek to

alleviate these problems by incorporating the results over

multiple classification models to reduce the potential for

overfitting the training data [20]. This process allows

researcher to increase the utility and more effectively

use the data that they posses.

There have been a number of studies which have

incorporated ensemble learning, including bagging, into

their studies. Tan et al. [15] performed a study comparing

ensemble methods to a single classifier C4.5 on a series

of cancer classification gene microarray datasets and

found that ensemble techniques show improved results

for gene expression data. Chen et al [4] compared three

different ensemble learning techniques on gene microar-

ray data with preprocessing being performed by the

Relief-F feature ranker prior ensemble implementation.

They found that ensemble methods when combined with

data pre-processing techniques show improved results.

Nagi et al. [12] looked at bagging, boosting, and stacked

generalization along with their own proposed method

on a series of nine bioinformatics datasets. Results

show that bagging outperforms both boosting and stack

generalization and was competitive with their proposed

method.

However, these studies are not without their down-

sides. Tan et al. [15] only uses one run of ten-fold

cross-validation, instead of multiple runs of a smaller

fold number cross-validation which reduces bias due

to a chance split. Additionally, Tan et al. performs

their dimensionality-reducing technique, discretization,

before implementing cross-validation. This is a prob-

lem because the features chosen may not be as valid

when the training dataset changes due to the process

of cross-validation. This is further compounded when

the datasets change again due to the ensemble learning

techniques. Tan et al.’s datasets are not all balanced. One

of their testing datasets is imbalanced (minority class

distribution of 10.07%). This calls into question their

results as that the chance of overfitting caused by relying

on a small number of minority instances is increased

with the multiple models. Chen et al. [4] only uses

feature selection on two of the approaches being tested

and uses them externally to the ensemble approaches.

Additionally, they reported that their “experiments are

repeated 30 times independantly” [4] but give no expla-

nation as to how. Lastly, Chen et al. do not give any

information on the class distribution of their datasets.

Nagi et al. [12] does not perform any feature selection

within their experiment. They, like Tan et al., also only

perform one run of ten-fold cross-validation instead of

multiple runs of a smaller fold cross-validation. Nagi et

al., like Chen et al., do not give the class distribution

of the training and testing datasets created from the

original data used in their study. However, upon further

investigation of the source of the data, the Kent Ridge

Bio-Medical Dataset Repository (link can be found in

the original article [12]), it was found that one of the

original datasets is clearly imbalanced (minority class

distribution of 17.13%) which becomes an issue when

you do not take measures to counteract the imbalanced

classes (e.g., data sampling). Lastly, all of the studies do

not take measures to preserve the class distribution when

performing ensemble techniques.

In contrast, our work addresses each of these issues.

We perform four runs of five-fold cross-validation to re-

duce bias due to a chance split. The feature selection per-

formed in this work is always performed upon the twenty

training datasets generated by each iteration of four runs

of five-fold cross-valaidation. Additionally, in the case

of Select-Bagging, feature selection is performed on

all new training datasets genereated from the sampling
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with replacement process. Lastly, all of our datasets are

binary class datasets which have relatively balanced class

distributions with the minority class percentage ranging

from 42.50% to 50.00%. We also take steps to preserve

the class distribution of the original training dataset (see

Section III for details). These factors give our work a

unique view of the ensemble learning process and gives

further credence to our findings.

III. SELECT-BAGGING AND FEATURE SELECTION ON

THE TRAINING DATASET FOLLOWED BY

CLASSIFICATION

Bagging was developed in 1996 [3] in order to

improve the results of unstable single-run classifiers.

The basic principle of bagging is to take a random

sample of T instances from the dataset with replacement

where T is the number of instances in the unsampled

dataset. However in order to conserve the inherent class

distribution ratio of the original training dataset, the T
instances are split into P and N instances where P
and N are the number of instances in the positive and

negative classes found in the original training dataset.

Using this new dataset, a model is built using a classifier

and the results are recorded. This process repeats R times

and the results of the R models are aggregated into a final

decision.

Select-Bagging (see Figure 1) incorporates feature

selection into the process of bagging by performing

feature selection after the sampling with replacement for

every iteration of the bagging algorithm. The reason why

the feature selection is performed for every iteration is

that a different dataset is used in every iteration and the

feature chosen for one dataset is not guaranteed to be

valid for another. Therefore, by incorporating the feature

selection into each iteration we are not forced to rely on a

set of features chosen for a different dataset. The Select-

Bagging process is implemented in the Weka data mining

toolset [8] using the default number of 10 iterations.

However, because ensemble techniques have a higher

computational cost over single classifier learners, we

need to compare the classification performance of Select-

Bagging to that of a model built from feature selection

on the training dataset followed by classification (FS-

Classifier). If the classification performance of Select-

Bagging is decisively better than that of FS-Classifier,

then the implementation of Select-Bagging is worth the

additional computational cost.

IV. METHODOLOGY

A. Datasets

Table I contains the list of all seven datasets used

in this study, along with citations which contain the

details of the datasets. Included in this table are the

names, number of minority class instances, total number

of instances, the % of instances in the minority class, the

number of attributes, and the Average AUC value. This

average AUC value is a measure of the inherent difficulty

of building a model on the dataset. This value is based on

classification models built on unaltered datasets using no

data sampling and no feature selection. To create these

AUC scores, five-fold cross-validation was employed and

the average performance from six classification learners

was used: Naı̈ve Bayes, Multilayer Perceptron, 5-Nearest

Neighbors, Support Vector Machines, and two versions

of C4.5 decision trees (one using default parameter val-

ues, one using Laplace smoothing and no pruning [18]).

Note that the results from these classifiers were used only

to determine how challenging it is to build a effective

model on the dataset and have no further bearing on

the rest of the experiment presented in this study. All

models were built using the Weka data mining toolkit [8].

All seven datasets are DNA microarray datasets from a

number of different bioinformatics and medical projects.

We chose these datasets because they are all relatively

balanced datasets (smallest minority class percentage is

42.50%) and none of the datasets can be considered

trivial in terms of difficulty.

B. Feature Ranking Techniques

Feature selection has become a necessary step when

analysing bioinformatics datasets. In this work we utilize

two filter-based feature rankers: Area Under the Receiver

Operating Characteristic Curve (ROC) and Signal-to-

Noise (S2N). These techniques were chosen for their

relatively good performance in terms of classification [6].

ROC is Threshold-Based Feature Selection (TBFS)

technique. TBFS treats feature values as ersatz poste-

rior probabilities and classifies instances based on these

probabilities, allowing us to use performance metrics

as filter-based feature selection techniques. The TBFS

technique which uses Area Under the Receiver Operating

Characteristic Curve as its performance metric has been

shown to be a strong ranker. For details on TBFS and

the ROC metric please refer to Abu Shanab et al. [1].

S2N is a measure of how well a feature separate the

two classes. The metric is the ratio of the difference

between the mean values of that feature form the positive
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Fig. 1: Select-Bagging

TABLE I: Details of the Datasets

Name
# Minority Total # % Minority # of Average
Instances of Instances Instances Attributes AUC

DLBCL [16] 23 47 48.94% 4027 0.8675
Prostate [17] 59 136 43.38% 12601 0.7823

Breast Cancer [17] 46 97 47.42% 24482 0.6009
DLBCL NIH [17] 102 240 42.50% 7400 0.5853
BCancer50k [5] 200 400 50.00% 54614 0.8564
Spira2007 [14] 90 192 46.88% 22216 0.6661

SotiriouMatrixData-Grade [13] 45 99 45.45% 7651 0.6325

class instances and the negative class instances over the

difference between the standard deviations of that feature

for the positive class and the negative class instances.

The larger the S2N ratio, the more relevant a feature is

to the dataset [10].

C. Classifiers

In this paper, we use the Naı̈ve Bayes (NB) classifier

to build the inductive models. Because this is a well-

understood technique, there is only a brief discussion of

the learner here. Naı̈ve Bayes [19] is a Bayesian learner

that attempts to approximate the posterior probability

of an instance belonging to a particular class, given its

values for the different features. By using Bayes’s rule

and making the naı̈ve assumption of conditional inde-

pendence, this can be computed based on the individual

probabilities of each feature value given each class. All

of the models in this paper were built using the Weka

data mining toolkit [8] with the default parameter values.

D. Cross-Validation and Performance Metric

Cross-validation [11] is a process that divides the

original dataset into N approximately equal-size parti-

tions (folds), builds the model using (N − 1) of these

folds, then tests the built model using the N th fold. This

process is repeated N times so that each fold is used

(N − 1) times to build the models and used only once

to test the built model. The advantage of N -fold cross-

validation over random sub-sampling is that all instances

are used for both training and testing, and each instance

is used only once per fold for evaluating purposes. In

this study, we used four runs of five-fold cross-validation

to reduce any bias due to randomness. Additionally,

we performed either FS-Classifier or the Select-Bagging
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process for each of the twenty training datasets generated

by every occurrence of 4 runs of 5-fold cross-validation,

which results in 20 models per instance for FS-Classifier

and 200 models for the Select-Bagging technique.

We use Area Under the ROC Curve [7] to evaluate

all built classification models. The Area Under the ROC

Curve plots the curve of True Positive Rate (TPR) versus

False Positive Rate (FPR) across all decision thresholds;

the area under the curve represents balanced levels that

the model makes trade off between TPR and FPR.

Because we use the Area Under the ROC Curve as

both a classification performance metric and a ranker, as

described in Section IV-A, anytime that confusion may

arise, we use AUC as the performance metric and ROC

as the feature ranker.

V. RESULTS

In this study, we sought to observe how the inclu-

sion of bagging affect classification performance on

high-dimensional bioinformatics datasets. To conduct

the study, we used a series of seven high-dimensional

datasets along with two filter-based feature rankers, the

Naı̈ve Bayes classifier, and four feature subset sizes.

Table II contains the results of our experiment. Each

value in the table is the average AUC value across the

seven datasets for each combination of feature selection

technique, feature subset size, and choice to include

bagging. The top performer between Select-Bagging and

FS-Classifier is in boldface for every combination of

feature ranker and subset size. It should be noted that in

the tables FS-Classifier.

As we see from the results, Select-Bagging outper-

forms single feature selection for every scenario. In terms

of differences in performance, the smallest difference

occurs when using subset size 25 and the largest at

subset size 50. This trend holds true for both feature

rankers. When we observe the results from each dataset

(not shown due to space considerations) we see that

Select-Bagging outperforms single feature selection for

39 of the possible 56 (69.64%) scenarios across the

seven datasets and both feature rankers. For the individ-

ual rankers Select-Bagging outperformed single feature

selection 22 out of 28 scenarios (78.57%) for ROC and

17 out of 28 scenarios (60.71%) for S2N.

In order to further validate the results in our classifi-

cation experiments, we performed a one-factor ANalysis

Of VAriance (ANOVA) test [2] with the choice of data

sampling approach being the factor, across the seven

datasets to determine if the choice of including bagging

has any significant effect on the AUC levels. When we

look at Table III we see that the choice of bagging is

a significant factor. This is shown by the Prob>F score

being below 0.05. Additionally we performed a multi-

ple comparison test using Tukey’s Honestly Significant

Difference (HSD) test [2]. Figure 2 shows that the two

approaches yield significantly different performances and

that Select-Bagging is the top performer. Thus, based

on the results and the statistical analysis we can state

that the inclusion of bagging is beneficial to classifica-

tion performance on relatively balanced bioinformatics

datasets.

VI. CONCLUSION

Ensemble learning has the potential to be a powerful

tool for improving the performance of inductive models.

However, one of the downsides to ensemble learning

is the computational expense. The question remains,

does the inclusion of ensemble learning improve the

classification performance enough to implement it. This

study focuses on the ensemble approach Select-Bagging

and compares its classification performance to that of FS-

Classifier. We test these two approaches using a series

of seven balanced bioinformatics datasets, two feature

rankers, and the Naı̈ve Bayes classifier.

Our results show that the models which implement

Select-Bagging outperform those which just use FS-

Classifier. Looking across the datasets, for all subset

sizes and feature rankers, Select-Bagging outperforms

FS-Classifier. Additionally, when we observe the results

for each dataset we see that, for a majority of scenarios,

Select-Bagging outperforms FS-Classifier. To confirm

our results we performed a one factor ANOVA test which

shows that the choice of including Select-Bagging is sig-

nificant. Tukey’s HSD test show that the two approaches

are disjoint and that Select-Bagging performs better.

Therefore, we recommend that the inclusion of Select-

Bagging is significantly beneficial to the classification

performance of model built from balanced bioinformat-

ics data.

Future work in this area consists of implementing

other ensemble methods (e.g., boosting) to see if the

same trends occur. In addition, by implementing these

other ensemble methods we can determine which one is

the most appropriate.
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