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Abstract—In the domain of bioinformatics, two common
problems encountered when analyzing real-world datasets
are class imbalance and high dimensionality. Boosting is
a technique that can be used to improve classification
performance, even in the presence of class imbalance.
In addition, data sampling and feature selection are two
important preprocessing techniques used to counter the
adverse effects of both challenges collectively. In this study,
we examine whether the inclusion of boosting along with
joint deployment of feature selection and data sampling
techniques affect the classification performance of induc-
tive models. To this end, we used two approaches: filter-
based feature selection followed by either data sampling
(denoted as FS-DS) or a hybrid data sampling and boosting
technique entitled RUSBoost (denoted as FRB) which inte-
grates random undersampling within the boosting process.
We conducted an extensive experimental study using six
high dimensional and imbalanced bioinformatics datasets
along with three learners and four feature subset sizes.
Our results show that the improvement of classification
performance due to boosting depends on the choice of
learner used to build the model. We recommend FRB
because it outperforms FS-DS for nearly all scenarios.
Additionally, our ANOVA analysis shows that the FRB
is statistically distinguishable from the FS-DS when using
the LR learner. To our knowledge, this is the first study
to investigate the effects of boosting along with combined
feature selection and data sampling on classification perfor-
mance of inductive models in the domain of bioinformatics.

Keywords-High dimensionality; feature subset size; class
imbalance; data sampling; boosting; RUSBoost;

I. INTRODUCTION

Class imbalance happens when one class has many

more instances than the other class(es) and it is often

found to be a problem in bioinformatics data that can

lead to increase bias toward the majority class and

suboptimal classification results. Boosting is a technique

that can be used to tackle the challenge of class im-

balance [16] and improve classification performance.

AdaBoost [12] is the most common boosting algorithm

that iteratively builds an ensemble of models to improve

the performance of any weak classifier. Seiffert et al. [21]

developed an innovative and effective hybrid data sam-

pling and boosting algorithm called RUSBoost that is

designed to improve the performance of models trained

on imbalanced data. The RUSBoost algorithm integrates

random undersampling within each iteration of boosting.

Another technique that can be used to counter the

class imbalance problem is data sampling. It modifies the

composition of the original data by removing instances

from the majority class until the target class ratio is

achieved or by adding instances to the minority class un-

til the target class ratio is reached. In this study, we used

random undersampling to achieve a class balance ratio of

minority to majority of 50:50; this selection of random

undersampling and class ratio were based on preliminary

investigations supported by early research [1].

In addition to class imbalance, high dimensionality

is a common problem found in bioinformatics datasets.

High dimensionality occurs when there is an excessive

number of features (genes) within the data. Feature

selection [15] is a common preprocessing technique

designed to alleviate the problem of high dimension-

ality by choosing an optimum subset of features from

a very large set of features. These techniques attain

this objective by identifying the redundant or irrelevant

features and choosing only the most useful features for

subsequent analysis. This reduction in the number of

features not only improves the efficiency of building the

models from the reduced feature set, but improves the

performance of these models in most cases [27]. Feature

ranking techniques have become a very practical tool

in the analysis of bioinformatics datasets because these

techniques require smaller computational demands and

produce output that is intuitive to understand.

The main objective of this paper is to investigate

whether there is a difference (in terms of classification

performance) when we deploy boosting along with joint

application of feature selection and data sampling in

building effective classification models. Thus, we con-

ducted an empirical study using six high dimensional and
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imbalanced bioinformatics datasets, three learners, and

four feature subset sizes, performing an in-depth analysis

of the effect of the inclusion of boosting when combined

with feature selection and data sampling on the classifi-

cation models’ performances. Our results show that the

inclusion of boosting improved the classification perfor-

mance for all but one scenario. Thus we recommend

boosting for the increased classification performance.

However, because for the 5-NN and Naı̈ve Bayes learn-

ers the differences are not significant, boosting can be

removed for improved computational costs though there

will likely be a reduction in classification performance.

No previous work has considered such an extensive

empirical study in the field of bioinformatics that in-

vestigate the effects of boosting along with the joint

application of feature selection and data sampling on

classification performance of the build models. In ad-

dition, our recommendations are the main contributions

to the domain of bioinformatics by providing guidelines

on techniques to use or to avoid by practitioners and

researchers in the field.

The rest of the paper is organized as follows. Section II

discusses previous research that relates to our empirical

study. Section III describes data sampling approaches

and the RUSBoost technique utilized in this work.

Section IV outlines methods that we use to conduct

our experiment, including datasets used in this work.

Section V presents the results of our work along with

discussions of the results. Lastly, Section VI presents

our conclusions and topics for future work.

II. RELATED WORKS

Working with datasets from the field of bioinformatics

can be a challenging task because of the two prevalent

problems of high dimensionality and class imbalance.

Much research has been conducted with respect to the

problems of high dimensionality and class imbalance

in isolation. For example, Batuwita et al. [3] indicated

that class imbalance is a major challenge particularly

in the field of bioinformatics. This challenge is due to

the fact that many traditional classifiers assume that the

classes are relatively equal in size [14]. Another study,

by Sharma et al. [22], stated that feature selection not

only aims to alleviate the common problems associated

with high dimensionality, the redundant and/or irrelevant

features, by choosing an optimum subset of the original

features by identifying the most important features and

removing the rest, but it can improve the generaliza-

tion capability of classification models built using the

selected features.

However, there has been little work on investigating

both problems simultaneously. One such study stated that

high-dimensional imbalanced datasets exhibit suboptimal

classification performance [6]. A study by Al-Shahib et

al. [2] examined the joint effects of feature selection

and data-sampling techniques on the performance of

three classifiers. They used a single protein sequence

dataset, a wrapper-based feature selection technique,

and a random undersampling technique. Their finding

was that, in general, applying both techniques (feature

selection followed by random undersampling) improves

classification performance. Unlike our study, their work

was limited because it considered only one dataset that is

not high dimensional (433 features), three classifiers, and

one wrapper-based feature selection technique. However,

in this study, we used six high-dimensional imbalanced

datasets and three learners.

Blagus and Lusa [5] studied the performance of two

data-sampling techniques, including random undersam-

pling, on three breast cancer gene expression datasets.

One drawback of this work, however, was that only

one dataset was imbalanced, whereas in our study, all

six datasets are highly imbalanced. They found that,

for all classifiers, random undersampling outperformed

SMOTE, particularly when feature selection was per-

formed prior to the application of data sampling. These

significant procedural differences make the present work

more comprehensive than their work and improve the

generalizibility of our results.

Boosting is another technique that can be used to

alleviate the problem of class imbalance [21] and to

improve classification performance for the built models.

Boosting has not received much attention in the context

of learning from bioinformatics imbalanced data. Lee

et al. [19] conducted a comparative study to assess

the performance of a variety of classification meth-

ods (including boosting) on seven microarray datasets.

They found that boosting improved the classification

performance. Khoshgoftaar et al. [16] stated that while

boosting attempts to tackle the class imbalance problem

using adjusted weights of instances, the boosting alone

may not be sufficient to address the problem for severely

imbalanced datasets. Seiffert et al. [21] developed an

innovative hybrid boosting method called RUSBoost that

integrates data sampling (random undersampling) into

each iteration of boosting before building the classifi-

cation models. We use RUSBoost in our present study

due to its effectiveness compared to other boosting

techniques [21].

To our knowledge, this is the first extensive work in
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the domain of bioinformatics considering the classifi-

cation performance of joint feature selection and data

sampling along with boosting (denoted as FRB) and

without boosting (denoted as FS-DS). We used six high-

dimensional and imbalanced bioinformatics datasets us-

ing three learners and four feature subset sizes to in-

vestigate whether deploying boosting can improve the

performance of a classifier. As a results of this research

we provide recommendations that will help practitioners

and researchers in the field decide which techniques to

deploy or to avoid.

III. DATA SAMPLING APPROACHES AND RUSBOOST

Data sampling is a common preprocessing technique

used to alleviate the class imbalance problem. One

approach to combine feature selection and data sampling

(to tackle both challenges of high dimensionality and

class imbalance simultaneously) is to apply feature se-

lection (FS) prior to data sampling (DS) and using the

sampled data along with the selected features (denoted

as FS-DS) as training data [1]. In this study, we use

random undersampling (RUS) as the sampling technique

due to its relatively higher performance over other data

sampling techniques [21].

Boosting [12] is an ensemble technique to improve the

performance of weak classifiers for building inductive

models iteratively. At each iteration, boosting builds a

new hypothesis and evaluates error associated with the

hypothesis. Then, it adjusts the weights of each instance

by increasing the weights of misclassified instances

while decreasing the weights of correctly classified in-

stances. Finally, all hypotheses from each iteration are

used in a weighted vote to classify a new instance.

In 2010, Seiffert et al. [21] developed an innovative

hybrid boosting method called RUSBoost (See Figure 1)

that simply integrates random undersampling into each

iteration of the boosting algorithm before building the

classification models. As one can see, random undersam-

pling (discarding instances from the majority class in a

random fashion to achieve a desired balance class ratio)

is applied to achieve a more balanced post-sampling class

ratio before building inductive models. In this work, we

applied filter-based ranking feature selection technique

followed by RUSBoost (denoted as FRB) not only to

tackle both problems jointly but to determine the effects

(if any) of boosting on classification performance of

inductive models.

In this work, we used the 50:50 post-sampling class

ratio of minority to majority to compare classification

performance of inductive models built using both ap-

proaches FS-DS and FRB. This class ratio was chosen

due to preliminary investigations showing that it is

appropriate and because the goal of data sampling is to

have a balanced dataset.

IV. METHODOLOGY

A. Datasets

Table I contains the list of all six datasets used in

this study, along with citations discussing the datasets

in details. This table includes different characteristics of

each dataset, such as name, total number of minority-

class instances, total number of instances, percentage

of instances from the minority class, the number of

features (genes), and the average AUC values for all

datasets. This average AUC value is based on classifi-

cation models built on raw data using no data sampling

and no feature selection. To create these AUC scores,

five-fold cross-validation was employed and the average

performance from six classification learners was used:

Naı̈ve Bayes, Multilayer Perceptron, 5-Nearest Neigh-

bors, Support Vector Machines, and two versions of C4.5

decision trees (one using default parameter values, one

using Laplace smoothing and no pruning [29]). Note

that the results from these classifiers were used only

to determine the difficulty of the datasets and have no

further bearing on the rest of the experiment in this

study. All models were built using the Weka data mining

toolkit [13]. For more information on the process of

calculating these values please refer to [9].

All six datasets are DNA microarray datasets publicly

available from a number of different bioinformatics and

medical projects. We chose these datasets because they

exhibit a variety of class imbalance levels (in the range of

8.89%–25.56%) and large number of genes (in the range

of 4,027–54,614, with the majority of datasets having

more than 10,000 genes). In addition, these datasets

exhibit a large variety of high class imbalance levels

and none of the datasets can be considered balanced,

thus data sampling is appropriate.

B. Feature Ranking Techniques

In this work, we use only one ranker, Area Under the

ROC Curve (ROC), from a family of rankers we refer

to as “Threshold-Based Feature Selection” (TBFS) [28].

The feature ranker ROC was chosen due to preliminary

investigations supported by early research [10] that this

ranker is effective for bioinformatics datasets. We use

feature ranking because filter- and wrapper-based subset

selection techniques can be computationally prohibitive,
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Fig. 1: RUSBoost combined with external feature selection

TABLE I: Details of the Datasets

Name
# Minority Total # % Minority # of Average
Instances of Instances Instances Attributes AUC

Brain Tumor [26] 23 90 25.56% 27680 0.7210
ECML Pancreas [23] 8 90 8.89% 27680 0.6723

Lung 50k [8] 70 400 17.50% 54614 0.8150
Ovarian MAT [6] 16 66 24.24% 6001 0.7896
Lymphoma [25] 23 96 23.96% 4027 0.8511
GSE1456 [20] 40 159 25.16% 12066 0.6108

in particular for datasets with high numbers of features

(genes), which are very common in the field of bioinfor-

matics.

Area Under the ROC Curve (ROC) [28], the area

under the receiver operating characteristic (ROC) curve,

is a measurement based on statistical decision theory.

The ROC curve is used to measure and optimize the

trade-off between True Positive Rate (TPR) versus False

Positive Rate (FPR) across all decision thresholds. In

this work, the ROC is used to determine the quality of a

feature and to select the top features of each dataset to

conduct our empirical study.

As the main objective of feature selection is to choose

an optimum subset of features that can be used for

subsequent analysis using classifiers to build inductive

models, one must decide on how many of the features

to use for this purpose. In this work, we decided on

four feature subset sizes: 25, 50, 100, and 200. These

four subset sizes are appropriate according to previous

research [7].

C. Classifiers

In this paper, we use three classifiers: 5-Nearest

Neighbor (5-NN), Logistic Regression (LR), and Naı̈ve

Bayes (NB). Because these are well-understood tech-

niques, we provide only a brief discussion of these

learners here. We refer interested reader to provided

references for more information. All models in this paper

were built using the Weka data mining toolkit [13]

with default parameter values unless otherwise speci-

fied. Note that any changes to default parameter values

were applied when experimentation showed an overall

improvement of the classification performance [24].

5-Nearest Neighbor [30] is a lazy classifier that pre-

dicts the class of a new instance by finding the five

training-set instances closest to the test instance and hav-

ing them vote on the class. The “weight by 1/Distance”

parameter was used for this voting process.

Logistic Regression [18] creates a simple logistic

model of the data which predicts the class variable of
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new instances.

Naı̈ve Bayes [30] is a Bayesian learner that attempts

to approximate the posterior probability of an instance

belonging to a particular class, given its values for the

different features. By using Bayes’s rule and making

the naı̈ve assumption of conditional independence, this

can be computed based on the individual probabilities of

each feature value given each class.

D. Cross-Validation and Performance Metric

Cross-validation [17] is a process that divides the

original dataset into N approximately equal-size parti-

tions (folds), builds the model using (N − 1) of these

folds, then tests the built model using the N th fold. This

process is repeated N times so that each fold is used

(N − 1) times to build the models and used only once

to test the built model. The advantage of N -fold cross-

validation over random sub-sampling is that all instances

are used for both training and testing, and each instance

is used only once per fold for evaluating purposes. In

this study, we used four runs of five-fold cross-validation

to reduce any bias due to randomness. Additionally, we

performed feature selection and random undersampling

for each run and fold of every instance of 4 runs of 5-

fold cross-validation, which results in 20 feature rankings

per instance. We build (6 datasets x 1 feature ranking

technique x 4 feature subset sizes x (1 iteration for FS-

DS + 10 iterations for FRB) x 3 learners x 4 runs x 5-fold

cross-validation) = 15,840 inductive models to evaluate

the predictive power of the selected feature sets.

We use Area Under the ROC Curve [11] to evaluate

all built classification models. The Area Under the ROC

Curve plots the curve of True Positive Rate (TPR) versus

False Positive Rate (FPR) across all decision thresholds;

the area under the curve represents balanced levels that

the model makes trade off between TPR and FPR.

Because we use the Area Under the ROC Curve as

both a classification performance metric and a ranker, as

described in Section IV-A, anytime that confusion may

arise, we use AUC as the performance metric and ROC

as the feature ranker.

V. RESULTS

Table II contains the average AUC values for every

classification model constructed over four runs of five-

fold cross-validation for all three learners and four

feature subset sizes across all six high-dimensional and

imbalanced microarray datasets. To improve readability,

we present the best results of sampling approaches for

each combination of learner and feature subset size

in boldface. In addition, there are 12 (3 learners x 4

feature subset sizes) AUC values for each data sampling

approach (FS-DS and FRB) and we examine the fre-

quency with which each approach performs better than

the other. Looking at these results, we observe that FRB

outperforms FS-DS in 11 out of 12 scenarios (91.67%).

The one exception is when using NB and 100 features.

Based on these results we conclude that boosting can

improve the classification performance of a model.

In order to more rigorously examine the differences

between the approaches (FS-DS vs. FRB), we conducted

an ANalysis Of VAriance (ANOVA) [4] to validate these

results further and examine whether the difference in

performance among the two approaches is statistically

significant or not. Table III represents the ANOVA results

for one factor (boosting) for each individual learner.

We chose a significance level of 5% for this ANOVA

analysis; thus a “Prob>F” score of less than 0.05 is

considered to be statistically significant. The results

show that the differences between the two approaches

are statistically significant only for the classifier, LR.

In addition, we performed a multiple comparison test

with Tukey’s Honestly Significant Difference (HSD) [4]

criterion to find out which approach outperforms the

other. Figure 2 shows the multiple comparison for both

approaches for LR. In this figure, two approaches are

statistically significantly different if their intervals are

disjoint, otherwise they are not significantly different.

This figure shows that FRB outperforms the other ap-

proach and it is statistically different from FS-DS.

Based on the experimental results along with the

statistical analysis we find that the inclusion of boosting

does improve classification performance for bioinformat-

ics datasets in a majority of scenarios. However, for the

learners 5-NN and NB, because the difference is not

significant, we recommend that the inclusion of boosting

be done if the computational resources are available.

Otherwise, a practitioner can choose not to use boosting

to reduce computational costs but the results may not be

good.

VI. CONCLUSION

Class imbalance and high dimensionality are often

found to be two major impediments when dealing with

bioinformatics data. In this study, we examine the effects

of boosting using two approaches (feature selection fol-

lowed by data sampling versus feature selection followed

by a hybrid approach of integrating random undersam-

pling with boosting) on classification performance of

bioinformatics datasets. Thus, we conducted a thorough
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TABLE II: Classification Results - FS-DS vs. FRB

Learner
25 50 100 200

FS-DS FRB FS-DS FRB FS-DS FRB FS-DS FRB

5-NN 0.87741 0.88341 0.88211 0.88213 0.88085 0.88627 0.88343 0.89109
LR 0.82265 0.86040 0.82038 0.85075 0.83008 0.86410 0.84252 0.86911
NB 0.87549 0.87601 0.87349 0.87387 0.86798 0.86436 0.86860 0.87724

TABLE III: ANOVA Results: FS-DS vs. FRB

Class
Source Sum Sq. d.f. Mean Sq. F Prob>F

Ratio

5-NN
Boosting 0.0055 1 0.00547 0.39 0.5311

Error 13.3628 958 0.01395
Total 13.3683 959

LR
Boosting 0.2485 1 0.24854 11.09 0.0009

Error 21.4778 958 0.02242
Total 21.7263 959

NB
Boosting 0.0005 1 0.00053 0.04 0.8475

Error 13.5982 958 0.01419
Total 13.5987 959

Fig. 2: Tukey’s HSD Results: FS-DS vs. FRB - Logistic

Regression

empirical study and compared both techniques using

six high dimensional and imbalanced bioinformatics

datasets, three learners, and four feature subset sizes.

To our knowledge, no previous work has performed

such an extensive empirical study in the field of bioin-

formatics that investigates the effects of boosting along

with the joint application of feature selection and data

sampling on classification performance. Additionally,

the main contributions of this study to the domain of

bioinformatics are our recommendations that provide

guidelines on techniques to use or to avoid by practi-

tioners and researchers in the field.

Our results show that whether the inclusion of boost-

ing can improve the performance of a classification

model. Based on the results of this study, we recommend

boosting (FRB) because it is the most frequent top

performer. In addition, our results show that the boosting

(FRB) is statistically significantly different from FS-DS

when using the LR learner. Thus, this give us confidence

to state that boosting (using FRB) is a good and safe

choice to tackle both problems (class imbalance and high

dimensionality) jointly and improve classification results.

However, for NB and 5-NN boosting can be removed

for a slight performance decrease if the computational

resources are not available.

Future work will continue to include additional boost-

ing algorithms, datasets, sampling techniques, feature

rankers, and feature subset sizes. Another possibility

is to include datasets from another application domain

(health informatics) to investigate whether these results

will generalize.
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