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Abstract— Single motor unit activity study is a major re-
search interest because changes of MUAP morphology, MU
activation, and MU recruitment provide the most informative
part in diagnosis and treatment of neuromuscular disorders.
Intramuscular recordings often provide a more than one motor
unit activities, thus MUAP discrimination is a crucial task
to study single unit activities. Most neurology laboratories
worldwide still need specialists who spend hours to classify
MUAPs. In this study, we present a new real-time unsupervised
method for MUAP discrimination. After automatically detect
MUAPs, we extract features of spectrogram images from the
wavelet coefficients of MUAPs. Unlike benchmark methods,
we do not calculate Euclidean distances which assumes a
spherical distribution of data. Instead, we measure correlation
between spectrogram images. Then MUAPs are automatically
discriminated without any prior knowledge of the number of
clusters as in previous works. MUAP were detected on a real
data set with a precision PPV of 94% (tolerance of 2 ms).
We obtained a similar result in MUAP classification to the
reference. The difference in percentages of MU proportions
between our method and the reference were 3% for MU1, 0.4%
for MU2, and 12% for MU3. In contrast, F1-score for MU3
reached the highest level at 91% (PPV at the highest of 96.64%
as well).

I. INTRODUCTION

Motor unit activity analysis provides the most informative
part in diagnosis and treatment of neuromuscular disorders.
In intramuscular electromyography data, a motor unit action
potential (MUAP) consists of several muscle fiber action
potentials within the anatomical motor unit (MU). A single
MU activity is of research interest because changes of MUAP
morphology, MU activation, and MU recruitment yield valu-
able information. Neuropathic conditions happen with de-
creased recruitment whereas myopathic conditions happen
with MUAP morphology changes. Therefore, as an example,
a MUAP examination can confirm myopathic conditions and
identify the differential to find an appropriate biopsy site [1].
On the other hand, most neurology laboratories worldwide
still need experts who spend hours on classifying action
potentials (“spikes”) using commercial software tools (e.g.
Spike2 [2], Cerebus [3]) after each recording. Hence, a real-
time unsupervised method is highly desirable.

A practical spike discrimination procedure involves three
basic phases: spike detection, feature extraction, and spike
clustering. Spike detection processes have been performed by
three typical groups: threshold-based method, energy-based
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method, or template-based method. Though the threshold-
based one performs simple computation, it is sensitive to
noise [4]. The energy-based group which often uses a non-
linear energy operator (NEO)[5] to estimate the square of the
instantaneous product of amplitude and frequency of signal
is the most supported method [4] and is selected in this study.
Feature extraction algorithms have been reviewed recently in
[6] and [7]. Primitive techniques that used only very simple
features are subject to noise and/or inherent variation in spike
morphology. Among recent sophisticated methods, principal
component analysis (PCA) [8] still is the most popular with
very high accuracy though it is not for a real-time process
and has a high computational cost. Whereas, the discrete
wavelet transform (DWT) [9] that localizes well in both time
and frequency achieves fairly high accuracy at a relatively
high cost [7]. According to an early review of clustering
algorithms by Lewicki [10] and a recent one by Gibson et
al. [7], the current benchmark method is K-means clustering
[11] because it is simple and fast but not unsupervised.
The valley-seeking [12] and super paramagnetic clustering
(SPC) [13] are unsupervised and nonparametric but are
not real-time and have high complexity [7]. For example,
SPC also requires default settings of running 100 Monte
Carlo iterations that increases computation time. Most of
these techniques use the Euclidean distance metric that must
assume a spherical distribution of data. In fact, due to the
effect of electrode drift, ellipsoidal clusters are formed, not
spherical [7].

In this work, we propose a new real-time automatic non-
parametric method. We extracted a new feature set of spikes
to improve the performance. Instead of using Euclidean
distances as in previous works, we calculate the correlation
between spectrogram images learned from a short Fourier
transform (STFT [14]). Then MUAPs are automatically
discriminated without any prior knowledge of the number
of clusters.

II. ALGORITHMS

A. MUAP Detection

Intramuscular data is corrupted by spike-like correlated
noise. Thus, we need to make data points statistically inde-
pendent (“pre-whitening”). A practical approach is using a
linear prediction filter [15] and whiten the input signal itself
before we extract any MUAP. In this work, we use a third-
order forward linear predictor (FIR filter) that predicts the
current value of the real-valued original data based on past
three samples.
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We employ NEO to find changes in the energy of the
recording signal. NEO can provide the instantaneous energy
of the high pass filtered version of a signal. This feature
makes NEO an ideal detector of transients [16]. Let x(t) be a
real process which is band limited with a spectrum Sxx(w) =
0 for |w| > B and x(nT ) be the uniformly sampled version
of x(t) with a sampling interval T < π

B . For convenience, T
is dropped from the discrete time notations. For the discrete
time version x(n), the non-linear energy operator ψ [x(n)]
is defined by Kaiser [5] with an general adjacent time δ as
ψ [x(n)] = x2 (n)−x(n+δ )x(n−δ ). From the interpretation
by Mukhopadhyay et al. [16], the expectation value of
ψ [x(n)] will be much greater than a threshold level whenever
a spike appears because a spike is characterized by localized
high frequencies and an increase in instantaneous energy.
Most NEO-based spike detection algorithms introduce a
threshold level Θ (1). The NEO operation increases the
signal to noise ratio therefore the detection result is less
sensitive to Θ than methods that look only at changes in
amplitude or energy without regarding the frequency. This
detection method is unsupervised as the threshold can be set
automatically and also in real time with a small delay for
buffering or the initial calculation period.

Θ =C
1
N

N

∑
n=1

ψ[x(n)] (1)

where C is a constant which is used to tune Θ, and N is the
number of samples.

B. Feature Extraction

According to reviews [6][7], we extract MUAP features
with a reduced dimension by using both the DWT technique
[9] and a K-S test [17]. Basically, to find differences among
spikes, DWT is based on the quantification of energy found
in specific frequency bands at specific time locations. Let s(t)
be a spike waveform which can be presented by coefficients

C (a,b) = 1√
a

+∞∫
−∞

s(t)ψa,b(t)dt where ψa,b (t) = ψ
( t−b

a

)
is an

expanded or contracted and shifted version of a unique
wavelet function ψ(t) a and b are the scale and the time
localization, respectively. In the next steps, we apply a
dynamic spectral analysis that does not assume a stationary
signal as in conventional spectral analysis method but only
a segment of signal. It creates a series of spectral snapshots
(spectrogram) for every spike’s compressed coefficient set.
STFT is the mathematical technique to produce spectro-
grams. Let x[n] be an input vector to be transformed. x[n]
is broken up into frames (size m). Frames should overlap
each other to avoid artifacts at the boundary. This transform
can be expressed as in (2) and spectrogram{x(n)}(m,ω) ≡
|X(m,ω)|2.

X(m,ω) =
∞

∑
n=−∞

x[n]h[n−m]e− jωn (2)

where x[n] is an input of the transform, h[n] is a window
function with size m.

C. MUAP Clustering

To evaluate with a contemporary method later in Section
III, we first describe a brief algorithm for SPC. The SPC
method is compared here as it also uses wavelet coefficients
to classify but not a further spectrogram analyzing step. SPC
represents m features of a spike i by a point xi in an m-
dimensional space. Then it finds the interaction strengths
Ji j between the point xi and one of k nearest neighboring
points (3 [18]). Ji j reduces exponentially when the Euclidean
distance

∥∥xi− x j
∥∥2 increases. A smaller distance results in

a stronger similarity between two spikes. After that, SPC
assigns each point xi to a random state s in a set of q
states. Then, N Monte Carlo iterations are run for different
temperatures using the Swendnsen-Wang algorithm [19].

Ji j =

{
1
K exp(−‖xi−x j‖2

2a2 ) if xi is a neighbor of x j

0 otherwise.
(3)

where a is the average distance from xi to its K nearest
neighbors.

After extracting features of MUAPs by multi-resolution
analysis in both time and frequency, instead of using the
Euclidean distance metric, to account for electrode drift
in our own method, we measure the correlation between
spectrogram images . Let X and Y be two feature vectors
of MUAP X and MUAP Y , respectively. The correlation
degree rX ,Y between X and Y is calculated as rX ,Y = C {X ,Y}

σX σY
where C {X ,Y} is the covariance of X and Y . σX and σY are
the variances of X and Y , respectively. Then rX ,Y is one of
the inputs to classify automatically MUAPs into appropriate
clusters (Algorithm 1).

Algorithm 1 Correlation-based Clustering
function [C, Outliers]= clustering(S, F ,Θco)

i = 0; num = 0; y = [1]; sorted=nil;% initial
bin=S(2 : end, :);% matrix of N spikes
While (size(bin,1) 6= 0)

i= i+1;
z= find(y == i,1); % take unsorted spikes
If(z is not empty) then

num = num+1; C{num}=nil; % create new class
x= find(F(i, :)≥Θco); % take high correlated
x is added to sorted;
F(i,sorted) = 0; % clear sorted spikes
If( isempty(x)) then S{x, :} is added to C{num};
Else Outliers=bin; EndIf; % last remaining
bin=S(y, :); % temp remaining

End of If; End of while;
End;

The whole process of MUAP sorting (Algorithm 2) can be
implemented online with a small delay of the first buffering
duration. Let X be a buffered data segment (1 minute
long) from a recording channel. The spike set S and its
feature F are learned from NEO-based MUAP detection
method (Section II-A) and spectrogram-based feature ex-
traction procedure (Section II-B). M clusters of successfully
sorted MUAPs are determined completely in an unsupervised
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Algorithm 2 MUAP sorting
function [C, Outliers]= sorting(data, f s, w, Θco)

i=1;
While (i≤ length(X))

i = i+w; X= data(i : i+w); % buffering
X= Prewhitening(X); % denoise
S= NEO-based MUAP detection(X); % set of N spikes
Spec= Spectrogram-of-DWT(S); % N images
F= Correlation calculation(Spec); %rX ,Y of N images
[C,Outlier]= Correlation-based Clustering(S, F);
Online display(C,Outlier); % if requested

End;
End;

TABLE I
PERFORMANCE OF MUAP DETECTION.

Tolerance TP TN FP FN
0.5 939 7379623 609 519
2 1437 7123838 97 21
2.5 1451 7042723 84 7
5 1458 6688282 50 0

manner through the whole experiment without any priori
knowledge of the number of clusters as in previous works.

III. EXPERIMENTS

A. Data Set

We collected a real data set recording from a healthy
young male at the Fuglevand Laboratory [20]. We used
a rack-mounted electrophysiological recording system CED
[2]. The electrode type was the concentric needle electrode.
A neurologist expert worked on this data set and provide
labels of when a MUAP appear and which MU it belongs
to. The specialist used a commercial software tool (Spike2
[2]) and manually executed a template matching method. We
used this labeling result as a “references” to evaluate our
work.

B. Results

MUAPs were detected with a precision (positive predictive
value PPV) of 94% (2 ms tolerance). MUAPs which were
recognized the same as in the labels were denoted as True
Positives (TP). When a MUAP was recognized by our
method but not by the specialist, we denoted it as a False
Positives (FP). Instances that we failed to label as MUAPs
but were annotated as such, were defined as False Negatives
(FN). When our method and the annotation agreed that there
was no MUAP present, the instance was counted as a True
Negative (TN). Table I illustrates more detailed of these
TP, TN, FP, and FN across a wide range of tolerance. The
performance started being acceptable at a tolerance as little
as 1 ms and was very high at 2 ms.

Fig. 1 presents a similar result in MUAP classification.
There are three MUAP classes found in both methods.
In term of MUAP morphology in each class, the mean
MUAP waveforms for MUs were almost identical to the
reference’s ones (Fig. 2). We named our clusters according
to the names in the reference (e.g. MU1, MU2, MU3 in

TABLE II
COMPARISON OF MU HISTOGRAMS.

Reference proportions Our proportions F1-score* PPV*

MU1 29.97% 26.91% 86.47% 91.39%
MU2 32.90% 32.43% 81.53% 96.07%
MU3 36.44% 24.25% 91.00% 96.64%
Note: * Our method vs. the reference.

Fig. 2). The histograms of our MU records are also similar
to the ones of the reference (Table II). The difference in
percentages of MU proportions between our sorting method
and the reference were 3% for MU1, 0.4% for MU2, and
12% for MU3. The higher disparity of MU3 histogram may
partially come from a slightly larger number of MUAPs we
detected. In term of the accuracy of timing for every MU
contribution, we used both F1-score [21] and PPV . Sorting
evaluation sustains an unbalance classification, F1-score and
PPV are better measurements than conventional sensitivity
and specificity. PPV of each MU indicates the probability
that clustered MUAPs truly belong to that MU. Whereas,
F1-score (calculated as 2T P

(2T P+FP+FN) ) is the harmonic mean
of precision and sensitivity. Table II depicts these evaluation
results for every MU. In contrast with the aforementioned
variation in MU proportions, F1-score for MU3 reached the
highest level at 91% (PPV at the highest of 96.64% as well).
In general, all performance measurements we achieved in
this study are among of the most accurate outcome in spike
sorting evaluation works.

Fig. 1. Resemblance in MUAP classification by our method (left) and the
reference (right).

Fig. 2. Comparison of the mean MUAP waveforms for every MU between
our method (left) and the reference (right).

Furthermore, we evaluated with SPC since it is a popular
and high performance spike sorting method and it also uses
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TABLE III
MUAP SORTING EVALUATION.

Our method The SPC-based The reference
Number of clusters
(active MUs) 3

3 large
+ 3 small * 3

Total MUAPs 1534 1534 1468
MU1 MUAPs 395 422 440
MU2 MUAPs 356 394 483
MU3 MUAPs 476 414 535
Remaining MUAPs 307 304** 0
Note: * The sizes are 66 (Class 4), 25 (Class 5), and 19 (Class 6)
** three small clusters + the remaining class (size of 194)

TABLE IV
MUAP SORTING ASSESSMENT OF OUR METHOD VS. THE SPC-BASED.

Our method The SPC-based
TP FP FN TP FP FN

MU1 361 34 79 371 51 69
MU2 342 14 141 372 22 111
MU3 460 16 75 414 0 121

DWT coefficients as feature sets [7]. For the reason that
SPC was designed for an offline method [7], we tested
our method and the SPC-based method on one buffered
data segment (2 minutes). Before running SPC, we had to
pre-define an estimated number of valid clusters (e.g. 6 in
our case). While our method automatically produces three
similar clusters that are interpreted as active MUs to the
ones of references, the SPC sorting need a further validation
step by an operator. The operator need to discard the three
invalid small clusters (Class4, Class5, and Class6) out of
the six initially anticipated classes. Only after this step, the
classification by all three methods agreed in the number of
active MUs and their histograms (Table III). Though the
MU proportions formed by the SPC seems a closer to the
reference proportions, Table IV revealed a disparity of TP,
FP, and FN. Our method achieved much more TPs and much
less FNs than the SPC did for MU3. As for MU1 and MU2,
the SPC got a slightly better TPs and FNs but much more
in false positives.

IV. CONCLUSION

In summary, this paper proposes a real-time unsupervised
and nonparametric method to discriminate motor unit action
potentials. We tested our method on a real data set that
recorded by a team of our group. MUAPs were detected with
a precision PPV of 94% (2 ms tolerance). We obtained a
similar result in MUAP classification to the reference. Three
MUs were found in both methods. MUAP morphology is
identical in each pair of corresponding MUs. The histograms
of our MU records are also similar to the ones of the
reference. The difference in percentages of MU proportions
between our sorting method and the reference were 3%
for MU1, 0.4% for MU2, and 12% for MU3. The higher
disparity of MU3 histogram may partially come from a
slightly larger number of MUAPs we detected. We used both
F1-score [21] and PPV to measure the accuracy of timing for
every MU contribution. In contrast with the aforementioned

variation in MU proportions, F1-score for MU3 reached the
highest level at 91% (PPV at the highest of 96.64% as well).

While our method automatically produce three similar
clusters that are interpreted as active MUs to the ones of
references, the SPC sorting needs a further validation step
by an operator. We found that this step may limit application
of SPC in motor unit analyzing as we need to re-define this
number when the number of active MUs is larger than we
anticipated at the beginning. Our method does not encounter
this problem and also reaches a high performance.
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