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Abstract— Falls are a major cause of death and morbidity in
older adults. In recent years many researchers have examined
the role of wearable inertial sensors (accelerometers and/or
gyroscopes) to automatically detect falls. The primary goal of
such fall monitors is to alert care providers of the fall event,
who can then commence earlier treatment. Although such fall
detection systems may reduce time until the arrival of medical
assistance, they cannot help to prevent or reduce the severity
of traumatic injury caused by the fall. In the current study, we
extend the application of wearable inertial sensors beyond post-
impact fall detection, by developing and evaluating the accuracy
of a sensor system for detecting falls prior to the fall impact.
We used support vector machine (SVM) analysis to classify 7
fall and 8 non-fall events. In particular, we focused on the effect
of data window size and lead time on the accuracy of our pre-
impact fall detection system using signals from a single waist
sensor. We found that our system was able to detect fall events
at between 0.0625-0.1875 s prior to the impact with at least
95% sensitivity and at least 90% specificity for window sizes
between 0.125-1 s.

I. INTRODUCTION

Falls are the leading cause of injury among older adults
in Canada, including over 90% of hip fractures [2], [10]
and wrist fractures [7], and a large percentage of head and
spine injuries [6]. About 30% of older adults living in the
community and 60% of individuals living in a residential
care environment will experience at least one fall each year
[11]. Hip fractures are the most significant injury related to
falls, with approximately 23,000 annual cases in Canada, and
medical costs in excess of $1 billion [8].

Wearable kinematic sensors such as accelerometers and
gyroscopes represent a promising technology for preventing
and mitigating the effects of falls in older adults. One of
the key issues in preventing fall related injuries is to detect
a fall in its descending phase with a sufficient lead time in
order to deploy protective equipment (such as inflatable hip
protectors, helmets, etc.) to cushion the fall prior to impact
[12]. Wu and Xue [13] proposed a pre-impact fall detection
technique by thresholding the vertical velocity profile of the
waist worn accelerometer, and showed that with vertical
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velocity threshold set at -1 m/s their algorithm was able
to detect all falls with at least 70 ms lead time with only
three false positives found during approximately 13 hours
of data. Similarly, Nyan et al. [5] showed 100% sensitivity
with approximately 200 ms lead time by locating sensors
at the sternum, waist and under the arm. However, Nyans
threshold algorithm resulted in 16% of the activities of daily
living (ADLs) being misclassified as falls.

Our study diverges from traditional threshold-based meth-
ods by using a machine-learning pre-impact fall detection
method – support vector machines (SVM) – for better
adaptability and reliability. Furthermore, our study uses a
wide variety of fall and daily activity scenarios to more
rigorously test the accuracy of our SVM algorithm across a
combination of varying lead times and window sizes, using a
single waist mounted tri-axial accelerometer and gyroscope.

II. METHODS

A. Participants

Ten healthy adults (ranging in age between 22 and 32
years) participated in the study. All subjects were students at
Simon Fraser University (SFU), recruited through advertise-
ments posted on university notice boards. All participants
provided informed written consent and the experimental
protocol was approved by the research and ethics committee
at SFU.

B. Experiment Design

We examined a library of video sequences of 227 real-life
falls in older adults, acquired as part of an ongoing project
by our research team to examine the mechanisms of falls
in long-term care facilities [9]. We found that 75% of falls
were collectively due to the following seven causes: (i) slips,
(ii) trips, (iii) hit or bump by an object or another person,
(iv) collapse or loss of consciousness, (v) misstep or cross-
step while walking and (vi-vii) incorrect shift of bodyweight
while sitting down on or rising from a chair. We included all
seven of these types of falls in our laboratory experiment.
During all fall trials, the floor was covered with 30 cm thick
gymnasium mats into which we inserted a 12 cm thick top
layer of high-density ethylene acetate foam. The composite
structure was stiff enough to allow for stable standing and
walking while still soft enough to reduce the impact force to
a safe level in case of a fall.

In addition to fall trials, eight activities of daily living
(ADLs) were recorded which included: (i) walking, (ii)
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Fig. 1. Waist sensor signals for a sample slip fall trial. (a) Time of impact (dashed line) is estimated by finding the time of peak resultant linear velocity
(obtained from numerical integration of the resultant acceleration signal), and the window location (shaded region, not shown to scale) is shifted by the
lead time (not shown to scale) ahead of the time of impact. Mean and variance features are calculated within the window for each of the anteroposterior
(AP), mediolateral (ML), and inferior-superior (Inf/Sup) axes of the (b) linear velocity, (c) acceleration and (d) angular velocity signals. Note that the peak
linear velocity does not always coincide with peak acceleration.

standing quietly, (iii) rising from sitting, descending from
(iv) standing to sitting and from (v) standing to lying,
(vi) picking up an object from the ground, (vii) ascending
and (viii) descending stairs. All participants performed each
fall and ADL category three times. Accordingly, over ten
participants, a total of 210 fall trials and 240 ADL trials
were acquired.

C. Data Acquisition

In each trial, we recorded body kinematics using a single
tri-axial accelerometer and gyroscope (ranges of ±6 g and
±26.18 rad/s respectively, Opal model, APDM Inc., Portland,
OR) worn on a belt at the anterior aspect of the waist. Data
were recorded at 128 Hz for a duration of 15 s per trial and
streamed directly to a computer for storage and subsequent
analysis.

D. Data Analysis

Our data analysis focused on determining how the various
window size and lead time combinations influenced the ac-
curacy of our pre-impact fall detection algorithm (Fig. 1). We
used seventeen different data window sizes in combination
with eighteen lead times to evaluate their effect on the
sensitivity and specificity of the algorithm. The window sizes
used varied from 0.125 s to 1.125 s with an increment of
0.0625 s, while the lead times varied from 0.0625 s to 1.125 s
with the same increment.

In order to determine the base window location for fall
trials, we estimated the instance of the body impacting the
floor due to a fall by finding the time of peak resultant
velocity from the waist sensor [3]. The resultant peak ve-
locity was calculated through numerical integration of the
high-pass filtered (cut-off frequency of 0.25 Hz to remove
gravity signal) resultant acceleration signal. We then shifted
the base window location a fixed amount back from the
impact timepoint according to the chosen lead time (Fig.
1a). For increasing window sizes, we shifted the start time
point of the base window back in time by the corresponding
amount.

For ADL trials, we visually identified the start and end
time points of activity motion from the sensor signals, and
then set the base window location at a random position within
that time frame. ADL window start and end time points were
shifted symetrically from that base window as window sizes
were increased. Lead times were not used in the analysis of
ADL trials, as they do not contain a timepoint of interest
analagous to the fall impact time.

Within each window we calculated the means and vari-
ances of X-, Y- and Z-axis accelerations, velocities and
angular velocities to form the 18 features for use in our
Support Vector Machine (SVM) analysis (Fig. 1b-d). We
used the SVM implementation in LIBSVM [1] with a Radial
Basis Function (RBF) kernel for pre-impact fall detection.
The features (i.e. means and variances) were then split into
training and testing sets of equal size by choosing the data
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(b) Lead times: 0.25−0.375 s
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Fig. 2. Overall sensitivity and specificity of trial classification for each combination of window size and lead time. Subfigures (a-f) show results for
triplets of increasing lead time size. Note that sensitivity and specificity are relatively stable across all window sizes for the three smallest lead times
between 0.0625-0.1875 s (a), with sensitivity consistently above 95%. For larger lead times (b-f), sensitivity and specificity varied dramatically depending
on window size, indicating the algorithm performance was less robust for these cases.

from the first five subjects for training and the following
five for testing. The best combination of the two RBF kernel
parameters C and γ was selected by a grid-search with expo-
nential growing sequences (i.e. C ∈ {2−5,2−4, . . . ,214,215};
and γ ∈ {2−15,2−14, . . . ,22,23}). Each combination of pa-
rameter choices was tested using a 10-fold cross-validation
and the parameter with the best cross-validation accuracy
was picked. The final model, which was used for classifying
test data, was then trained on the entire training set using the
selected parameters. The process of training and testing the
SVM model was repeated for every combination of window
size and lead time.

After creating classification sets of test data for all window
size and lead time combinations, we evaluated algorithm per-
formance by calculating the sensitivity and specificity of each
classification set. To assess typical algorithm performance
per trial, we calculated the mean and standard deviation
of each trial’s classification sensitivity (for fall trials) or
specificity (for ADLs) across all combinations of window
size and the three smallest lead times (0.0625-0.1875 s).

All data analysis was performed in MATLAB (R2013a,
The MathWorks Inc.).

III. RESULTS

Overall sensitivity and specificity of trial classification for
each combination of window size and lead time are shown in
Fig. 2. We found that our algorithm yielded relatively stable
sensitivity and specificity values across all window sizes

for the three smallest lead times between 0.0625-0.1875 s
(Fig. 2a), with sensitivity consistently above 95% and with
specificity above 90% (for window sizes 1 s or smaller). For
larger lead times (Fig. 2b-f), sensitivity and specificity varied
dramatically depending on window size, indicating algorithm
performance was less robust for these cases.

Table I shows the individual trial means and standard
deviations (SDs) of classification sensitivity (for falls) and
specificity (for ADLs), as calculated across combinations
of all window sizes and the three smallest lead times. Our
algorithm typically had very high classification sensitivity
(means >97% and SDs <4%) for all fall trials, with the
exception of incorrect transfer while rising from sitting
(ITRS) which had a mean sensitivity of 93.5% and SD
of 7.5%. Classification specificity for ADLs was very high
(means >97% and SDs <4%) for rising from sitting to
standing (RSS), descending from standing to sitting (DSS),
and standing quietly (SQ); moderately high (means >94%
and SDs <5%) for normal walking (NW), ascending stairs
(AS), and descending stairs (DS); but were relatively low
and/or variable for descending from standing to laying (DSL,
mean of 93.2% but SD of 9.1%) and picking up an object
from the ground (POG, mean of 85.6% and SD of 11.3%).

IV. DISCUSSION

In this study we evaluated for the first time, to the best
of our knowledge, the effect of data window size and lead
time on pre-impact fall detection accuracy using data from a
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TABLE I
INDIVIDUAL TRIAL MEANS AND STANDARD DEVIATIONS (SD) OF CLASSIFICATION SENSITIVITY (FALLS) AND SPECIFICITY (ADLS)a .

Falls ADLs

CS HB ITDS ITRS LCC Slip Trip NW AS DS RSS DSS DSL SQ POG

Sens. (%) 99.3 100.0 97.4 93.5 98.2 99.3 99.9 Spec. (%) 94.5 96.3 94.6 99.7 97.8 93.2 100.0 85.6
SD (%) 2.0 0.0 4.0 7.5 3.5 2.4 0.9 SD (%) 4.6 4.7 4.6 1.3 3.7 9.1 0.0 11.3

aDescriptive statistics calculated by including all combinations of window sizes from 0.125-1.125 s and lead times from 0.0625-0.125 s (0.0625 s
increments), as shown in Fig. 2a. CS = cross-step, HB = hit or bumped, ITDS = incorrect transfer while descending from standing, ITRS = incorrect
transfer while rising from sitting, LCC = loss of consciousness or motor control, NW = normal walking, AS = ascending stairs, DS = descending stairs,
RSS = rising from sitting to standing, DSS = descending from standing to sitting, DSL = descending from standing to laying down, SQ = standing quietly,
POG = picking up an object from the ground.

waist-mounted inertial sensor. Furthermore, we employed a
machine learning algorithm (SVM), as opposed to traditional
threshold based techniques, to allow for more adaptability
and robustness across subject and motion variability.

Based on the analysis of data collected in lab experiments
with young adults, our system provided at least 95% sensitiv-
ity and at least 90% specificity for combinations of window
size from 0.125-1 s and lead time from 0.0625-0.1875 s.
However, we found that for lead times 0.25 s or greater,
sensitivity and specificity varied dramatically with choice of
window size, indicating poor robustness of the classification
performance. Therefore, we would recommend the use of a
target lead time around 0.1875 s or less, and window size
1 s or less for robust pre-impact fall detection.

Furthermore, we believe estimating the time of initial im-
pact for fall trials based on the instant of peak resultant linear
velocity is a more intuitively precise method than based
on peak acceleration as done prevously, since the largest
accelerations would typically occur shortly after impact [3].

There are several limitations of our study. Due to safety
concerns, all fall and ADL trials were performed by young
adults under controlled laboratory conditions and atop gym-
nasium mats. While there are important differences between
falling patterns from typical laboratory studies of young
subjects compared to real-life falls among older adults [4],
we attempted to minimize these differences by having our
subjects simulate a variety of falls most commonly observed
among older adults [9]. Also, our analysis did not attempt to
analyse sensor signals by sliding a sampling window along
the datastream, as would be necessary in a real-time im-
plementation for triggering device deployment, however, our
study design allowed for a controlled method of testing the
effects of window size and lead time. Finally, our system pro-
vided relatively low overall specificity, likely due to our wide
range of ADLs tested (with individual specificities ranging
from 85.6%-100%) and a modest testing sample from five
subjects. Future work is required to compare the accuracy
of machine learning versus threshold-based approaches on
the same data set. While current performance is too low for
practical use in device deployment, it may be improved in
the future through the use of larger training datasets of falls
and ADLs recorded from older adults, or with the use of
complementary signals from other physiological sensors.

Our results provide a template for future developement of
a robust pre-impact fall detection system, which is necessary
for the developement of ‘smart’ next generation inflatable hip
protectors or helmets for improved force attenuation and user
acceptance.
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