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Abstract— This paper aims to describe the optimal 

autoregressive order of varying-length electromyograms for 

myopathic subjects.  Epochs of electromyography signals are 

modeled as outputs of autoregressive systems, for orders 

varying from 1 to 100.  The optimal order to represent each 

epoch is chosen by the minimum description length criterion.  

Probability density functions are fitted to the histograms of the 

optimal orders.  The lognormal function provides the best 

fitting, and its mean value varies linearly with the epoch length. 

I. INTRODUCTION 

Electromyography (EMG) consists of recording and 
evaluating the electrical activity from skeletal muscle.  It is 
an important tool for the diagnosis of neuromuscular 
diseases [1]-[2] 

A simple mathematical description of EMG signals 
would be as outputs of linear time-invariant systems.  The 
use of such systems is justified, since some parameters of 
linear systems—autoregressive (AR) and cepstral 
coefficients—have provided useful information to help 
clinical diagnosis [3]-[6]. 

However, the use of AR systems poses the issue of 
choosing the appropriate number of parameters to represent 
the EMG signals.  In applications involving movement 
recognition, prosthesis control and muscle fatigue, AR order 
is well established in the low range from two to six [7]-[12].  
On the other hand, in the diagnostic classification, higher AR 
orders—from twelve to twenty—are used.  Different orders 
provide different rates of diagnostic classification, sweeping 
the range from 47.6% to 87.5% [3]-[4].  These results show 
that the number of coefficients of the AR model is a 
parameter that might influence the classification results. 

A previous paper has shown how AR orders varied with 
epoch length, in normal subjects—the mean values of the 
estimated orders increased with epoch length [13].  Several 
criteria have been used to estimate optimal AR orders, and 
the Minimum Description Length (MDL) criterion was 
shown to be the most appropriate, since it provided 
intermediate estimates of AR order [13], in comparison to 
Akaike’s Information Criterion [14] and Bayesian 
Information Criterion [15]. 

This paper focuses in the pathological cases, specifically 
in the myopathic subjects.  The optimal AR orders are 
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estimated by the MDL criterion, for several epoch lengths.  
Then probability density functions are fitted to the 
histograms of the estimated orders.   

The results presented here may be helpful in two 
applications.  The description of AR orders by probability 
density functions may help the development of an EMG 
model for simulation purposes, including normal and 
pathological cases.  It can also be used as an aid to the 
detection of myopathies.  For both applications, further 
research on the model coefficients should be performed for 
AR systems whose orders are described by the probability 
density functions given in this paper. 

II. METHODS 

A. Electromyography Signals 

EMG signals were obtained from a database, from which 
six myopathic subjects were chosen.  Signals had been 
recorded by concentric needle electrodes at several locations 
of the biceps brachii muscle.  Signal conditioning included 
proper amplification up to 1,000 times, and low-pass 
filtering with a cutoff-frequency of 10 kHz.  

Seven signals were selected for each subject, and 
corresponded to isometric and isotonic contractions at fifty 
percent of the maximum voluntary contraction force.  The 
selected signals were acquired at the rate of 25,000 samples 
per second by a twelve-bit analog-to-digital converter. 

Epochs of 500-ms length were tested for stationarity in 
mean and variance by the run test [16].  The selected 
stationary epochs were further divided into smaller epochs, 
in the range of 50 ms to 500 ms, in order to incorporate usual 
lengths mentioned in the literature [3], [13]. 

B. Autoregressive modeling 

Each epoch was considered as the output of an 
autoregressive (AR) system described by (Kay, 1987) 
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where  y(t)  is the EMG signal at the system’s output,  e(t)  is 
the unknown white noise at the system’s input,  t  is the 
sample number,  n  is the model’s order,  and  an(k)  are the 
model coefficients for a n

th
-order model. 

The AR coefficients and the variance of the input (zero-
mean white noise) were estimated by the modified 
covariance method.  This method was chosen because it 
presents good spectral resolution and does not suffer from 
spectral interference [17]-[18].  The modified covariance 
method is a least-squares technique for estimating the 
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autoregressive coefficients.  It minimizes the sum of squares 
of the forward and backward linear-prediction errors [19].  
The forward and backward linear-prediction errors are 
represented by 
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for t ≤ N–n, and  
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for n–1 ≤ t ≤ N–n, where the superscript asterisk 
*
 denotes 

complex conjugation, and N is the total number of samples. 

The optimal order of the AR system that best fitted the 
EMG signal was determined by the MDL function [20] 
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where n is the AR order, N is the epoch length in number of 

samples, and 
2

n
  is the variance estimate of the input noise.   

C. Histograms and fitting of probability-density functions 

For each epoch length, seven histograms were built—six 
individual histograms for the AR orders from each individual 
subject as well as one histogram for the ensemble of AR 
orders from all the subjects.  Since the AR orders were 
integer numbers varying from 1 to 100, the histogram bins 
had unitary width and were computed in the range of 1 to 
100.  The obtained histograms were then normalized by the 
corresponding number of epochs, resulting in the normalized 
histograms H(n). 

Several probability density functions were fitted to the 
normalized histograms.  Three of them—Gaussian, 
lognormal and Weibull—provided the most representative 
results and are therefore reported in this paper.  The 
Gaussian probability density function is described by 
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for Rx , where μ is the mean and σ is the standard 

deviation ; while the lognormal probability density function 
is given by 
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for x>0.  The Weibull probability density function is 
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for x>0, where a is the scale parameter and b is the shape 
parameter. 

D. Error computation  

Each probability density function f(x) was integrated in 
the intervals (n–0.5, n+0.5], resulting in the discrete 
distribution 
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for integer values of n. 

The total quadratic errors (ET) between the discrete 
distribution and the corresponding normalized histogram 
were given by 
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and the summation was truncated for L=1,000.  

RESULTS 

Fig. 1 shows the fitting of probability density functions to 
an individual histogram, as well as to the ensemble 
histogram.  The optimal orders represented in these 
histograms were computed for 100-ms epochs.  The fitted 
Gaussian function showed the widest peak, while the 
lognormal function provided the narrowest peak.   

Fig. 2 and Fig. 3 show the estimated parameters for the 
Gaussian, Weibull and lognormal distributions.  Fig. 2 shows 
that, in average, the parameters  μ  (for the Gaussian and 
lognormal distribution) and  a  (for Weibull distribution) 
increase with the epoch length.  Friedman’s test shows that 
these increases are statistically significant (p < 1 %). 

Fig. 3 shows an increase on parameter  σ  with epoch 
length, on average, only for the Gaussian distribution (p < 
1 %).  The remaining parameters do not show statistically 
significant variation with epoch length.  

Fig. 4 shows the total quadratic errors in fitting the 
functions to the normalized histograms computed for the 
optimal AR orders at varying epoch lengths (in 
milliseconds).  Considering the ensemble histograms, the 
smaller errors are provided by the lognormal probability 
density function, and the largest errors are given by the 
Gaussian distribution.  Intermediate results are obtained with 
Weibull distribution.  If one considers the mean errors, 
similar results are obtained for the individual fittings. 

The best fitting to the ensemble histogram can be 
described by a lognormal distribution with standard 
deviation  σ  equal to  0.6889  and a mean value given by the 
linear relation  μ=0.0027D+1.5415,  for epoch lengths  D  in 
milliseconds. 

Table I shows the mean values and standard deviations of 
the optimal AR-order histograms, for several epochs of 
normal [13] and myopathic subjects.  Apparently mean 
values increase with epoch length, for both normal and 
myopathic cases.  A similar trend is observed for standard 
deviations.  Besides it, for 100 ms, 250 ms and 500 ms, both 
mean values and standard deviations are higher (or equal) for 
myopathic orders than for normal ones. 
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Figure 1.  Fitting of probability density functions to the (A) individual 

histogram from subject 6, and to the (B) ensemble histogram. 

 

 

 

Figure 2.  Parameters  μ  and  a  for probability density functions.          

(A) circles and bars represent mean value  standard deviation for the 

parameters from individual fittings, while (B) crosses represent the result 

for the ensemble. 

 

Figure 3.  Parameters  σ  and  b  for  probability density functions.         

(A) circles and bars represent mean value  standard deviation for 

parameters from individual fittings, while (B) crosses represent the result 

for the ensemble. 

 

Figure 4.  Total quadratic error for fitting probability density functions to 

the AR order histograms.  (A) circles and bars represent  mean value  

standard deviation of errors for individual fittings, while (B) crosses 

represent the errors for the ensemble of subjects. 
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TABLE I.  COMPARISON OF NORMAL [13] AND MYOPATHIC AR-
ORDER ENSEMBLE HISTOGRAMS (MEAN VALUE ± STANDARD DEVIATION) 

epoch (ms) Normal Myopathic 

25 5 ± 3 
   

50 6 ± 2 5 ± 3 

100 7 ± 3 7 ± 5 

150 
   

9 ± 6 

200 
   

12 ± 13 

250 10 ± 5 14 ± 13 

300 
   

15 ± 13 

350 
   

17 ± 15 

400 
   

19 ± 16 

450 
   

20 ± 16 

500 12 ± 8 22 ± 17 

 

III. DISCUSSION 

The increase on the parameters  μ  (Gaussian and 
lognormal mean values) and  a  (Weibull scale parameter) 
with epoch length reflects a known behavior—the AR order 
estimates increase with epoch length.  As a consequence, the 
mean value of the probability density function accompanies 
the increase of order estimates.   

On the other hand, the increase of the parameter  σ  for 
the Gaussian distribution shows that the fitted functions 
spread over a wider range of values, as the epoch length 
increases. 

Errors indicate that the lognormal distribution provides 
the best fitting to the histograms and that the Gaussian 
distribution is the worst curve adjustment to the histograms.  
One possible reason is given by the fact that, unlike the 
Gaussian distribution, the lognormal probability density 
function is asymmetric and able to represent peaks for orders 
concentrated in the low end of the histograms.  Besides it, 
Gaussian distribution attributes non-zero probability to 
negative orders, which increases the error. 

Comparing myopathic to normal subjects, higher AR 

orders are observed for myopathic subjects, on average.  

This result suggests that normal EMG signals are better 

described by smaller AR models, and provide more 

consistent order estimates, as shown by smaller variances. 

IV. CONCLUSION 

Results suggest that the optimal AR order varies with the 

epoch length and that, for myopathic subjects, it may be 

described by a lognormal probability density function of 

linearly varying mean and constant variance.  

ACKNOWLEDGMENT 

C. I. thanks Prof. D. Sanders from Duke University for the 

EMG database and G. Vicinansa for selecting the signals. 

REFERENCES 

[1] A. Fuglsang-Frederiksen, “Interference EMG analysis,” in Computer-

Aided Electromyography and Expert Systems, J. E. Desmedt, Ed. 

Amsterdam: Elsevier Science, 1989, pp. 161–179. 

[2] C. Berzuini, M. Maranzana-Figini, and L. Bernardinelli, “Effective 

use of EMG parameters in the assessment of neuromuscular diseases,” 

International Journal of Bio-Medical Computing, vol. 13, pp. 481–

499, 1985. 

[3] G. F. Inbar, A. E. Noujaim, “On surface EMG spectral 

characterization and its application to diagnostic classification,” IEEE 

Transactions on Biomedical Engineering, vol. 31, no. 9, pp. 597–

694, 1984. 

[4] C. S. Pattichis and A. G. Elia, “Autoregressive and cepstral analyses 

of motor unit action potentials,” Medical Engineering and Physics, 

vol. 21, no. 6–7, pp. 405–419, 1999. 

[5] C. Itiki, “Dynamic programming and diagnostic classification,” 

Journal of Optimization Theory and Applications, vol. 127, ed. 3, 

Dec. 2005, pp.579-586 

[6] C. Shirota, M.Y. Barretto, C. Itiki. “Associative memories and 

diagnostic classification of EMG signals,” In:  Adaptive and Natural 

Computing Algorithms. B. Ribeiro, R. F. Albrecht, A. Dobnikar, Ed. 

Coimbra: Springer, 2005, pp.482-485. 

[7] J. Chiang, Z. Wang, M.J. McKeown. “Hidden Markov multivariate 

autoregressive (HMM-mAR) modeling framework for surface 

electromyography (sEMG) data,” Conf. Proc. IEEE  Eng. Med. Biol. 

Soc., 2007, pp. 4826–4829, 2007. 

[8] A. Latwesen, P.E. Patterson. “Identification of lower arm motions 

using the EMG signals of shoulder muscles,” Med. Eng. Phys., vol. 

16, no. 2, pp. 113–121, 1994. 

[9] Y. H. Chiou, J. J. Luh, S. C. Chen, J. S. Lai, T. S. Kuo. “The 

comparison of electromyographic pattern classifications with active 

and passive electrodes,” Med. Eng. Phys., vol. 26, no. 7, pp. 605–610, 

2004. 

[10] X. Chen, X. Zhu, D. Zhang. “Use of the discriminant Fourier-derived 

cepstrum with feature-level post-processing for surface 

electromyographic signal classification,” Physiol. Meas., vol. 30, no. 

12, pp. 1399–1413, 2009. 

[11] E. A. Clancy, D. Farina, R. Merletti. “Cross-comparison of time- and 

frequency-domain methods for monitoring the myoelectric signal 

during a cyclic, force-varying, fatiguing hand-grip task,” J. 

Electromyogr. Kinesiol., vol. 15, no. 3, pp. 256–265, 2005. 

[12] S. Karlsson, J. Yu. “Estimation of surface electromyogram spectral 

alteration using reduced-order autoregressive model,” Med. Biol. Eng. 

Comput., vol. 38, no. 5, pp. 520–527, 2000. 

[13] C. Itiki. Epoch length and autoregressive-order selection for 

electromyography signals. Proceedings of the 34th Annual 

International Conference of the IEEE-EMBS, San Diego, USA, 28 

Aug.-1 Sept., pp. 3476–3479, 2012 

[14] H. Akaike, “A new look at the statistical model identification,” IEEE 

Transactions on Automatic Control, vol. AC-19, no. 6, pp. 716–723, 

1974. 

[15] H. Akaike, “A Bayesian analysis of the minimum AIC procedure,” 

Annals of the Institute of Statistical Mathematics, vol. 30, part A, pp. 

9–14, 1978. 

[16] A. Wald and J. Wolfowitz, “Optimum character of the sequential 

probability ratio test,” Annals of Mathematical Statistics, vol. 19, 

no.3, pp. 326–339, 1948. 

[17] S. M. Kay, Modern Spectral Estimation: Theory and Application, 

Englewood Cliffs: Prentice- Hall, 1988, pp. 234–237. 

[18] S. L. Marple Jr. Digital Spectral Analysis with Applications. 

Englewood Cliffs, NJ: Prentice-Hall, 1987. 

[19] S. L. Marple Jr. “A fast computational algorithm for the modified 

covariance method of linear prediction,” Digital Signal Processing, 

vol. 1, pp. 124–133, 1991. 

[20] J. Rissanen, “A universal prior for the integers and estimation by 

minimum description length,” The Annals of Statistics, vol. 11, pp. 

417–431, 1983. 

117


