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Abstract— We investigate the maximal performance that can
be measured for automated binary decision systems in terms of
area under the ROC curve (AUC), against a reference standard
provided by human readers. The goal is to determine the
required characteristics of the reference standard to assess and
compare automated decision systems with a given degree of
confidence, or, to determine what degree of confidence can be
obtained given the characteristics of the reference standard. We
modeled the expected value of the AUC that can be measured
for a perfect decision system, given a reference standard
provided either by a single human reader or by multiple
human readers (consensus, majority vote). The proposed model
was applied to diabetic retinopathy screening in a dataset of
874 eye fundus examinations graded by three readers. The
expected value of the AUC for a perfect decision system was
estimated at 0.956 against a single human reader, and 0.990
against a ’majority wins’ vote of three human readers. The
Iowa detection program has reached the maximal performance
measurable by a single human reader (0.929, CI: [0.897-0.962])
and is close to the maximal performance measurable by a
’majority wins’ vote (0.955, CI: [0.939-0.972]).

I. INTRODUCTION

Automated decision systems are rapidly growing in im-
portance, typically when the amount of information is so
large that it cannot be processed exhaustively or efficiently
by human readers. An important field is wide-scale, massive
disease screening, where thousands or even millions of im-
ages must be evaluated, such as mammograms, colonoscopy
images or diabetic retinopathy screening. In order to allow
translation of such decision systems into clinical practice,
their performance relative to human readers needs to be de-
termined. In the image based computer aided detection field,
human readings and annotations are often accepted at face
value. But human readers, usually physicians specialized in
that field, are not perfect. This is shown by the interobserver
variability and the intraobserver variability. Given that the
reference standard almost never represents the true state of
the disease for all patients correctly, the central question is
what can be measured given the characteristics of the refer-
ence standard, or, on the contrary, what characteristics does a
reference standard require to allow reliable measurement of a
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desired performance? In this study, we focus on binary deci-
sions (e.g. normal versus abnormal): the automated decision
system assigns an abnormality probability to each patient,
ranging from 0 (high confidence that it is normal) to 1 (high
confidence that it is abnormal). The performance of auto-
mated binary decision systems is commonly measured using
the Area Under the ROC (Receiver Operating Characteristic)
Curve (AUC), which is considered the most accurate and
comprehensive measure of performance for binary decision
systems [1]. We propose to model the expected value of
the maximal AUC that can be measured for an automated
decision system, as a function of the characteristics of the
reference standard. Specifically, we model the expected value
of the AUC, measured in a dataset annotated by a single
reader, for a hypothetical decision system that always assigns
a higher abnormality probability to abnormal patients than
to normal patients. Confidence in the AUC measured for
an automated decision system is usually represented by
confidence intervals. Several approaches have been presented
in the literature to define a confidence interval on the AUC,
using a parametric [2] or a non-parametric [3] model of the
errors made by the automated decision system. But these
systems do not model the variability among human readers.

This paper focuses on Diabetic Retinopathy (DR) screen-
ing. DR is the most common cause of blindness in the
working age population of the United States and of the
European Union [4]. In the last decade, many automated
decision systems have been proposed to interpret digital
photographs of the retina, in order to help early detection
of DR [5]. Only a few detection systems have been assessed
in large screening datasets [6], [7], [8]: in almost all studies,
each exam in the dataset was read by a single human reader.

II. MODELING THE AUC OF A PERFECT AUTOMATED
BINARY DECISION SYSTEM

Given the performance of human readers, we model the
maximal measurable performance of automated decision
systems, in a reference dataset annotated by a single human
reader. Specifically, what we model is the expected value of
the AUC we would measure for a perfect decision system in
such a dataset.

A. Definitions

Let D = {c1, c2, ..., cn} be a dataset consisting of cases
ci,i=1..n. Each case ci in the dataset is associated with a

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 154



binary label li: li=’false’ if the case is thought to be normal,
li=’true’ otherwise.

1) Label vector: vector (li)i=1..n consisting of the labels
assigned by one reader (either an actual human reader or a
committee human readers or a simulated human reader) to
each case ci,i=1..n in the dataset.

2) Reference standard: label vector (li)i=1..n provided by
a human reader (or by human readers) for each case ci,i=1..n

in the dataset.
3) Reference gold standard: reference standard obtained

by a committee of human readers, either by a consensus or
by a ’majority wins’ vote.

4) Observed prevalence: percentage of cases ci,i=1..n in
the database whose label (that has been assigned by imperfect
human readers) is li =’true’.

5) Probabilistic labels: probability pi,i=1..n, assigned by
an automatic decision system, that case ci,i=1..n is abnormal.

6) Perfect decision system: hypothetical decision sys-
tem that provides a strict ordering of the cases ci,i=1..n

from the most obviously normal (cmost normal) to the most
obviously abnormal (cmost abnormal): pmost normal = 0
and pmost abnormal = 1. The concept of obviously nor-
mal/abnormal cases is illustrated hereafter. Observations
from obviously normal cases would clearly show to any
expert that there is no pathology, while observations from
less obviously normal cases would show patterns that appear
pathological. Similarly, observations from obviously abnor-
mal cases would clearly show many pathological patterns,
whereas observations from less obviously abnormal cases
would only show a subtle pathological pattern, or even
no pathological pattern at all (e.g. if it is occluded). A
perfect decision system always assigns a greater probability
to abnormal cases than to normal cases. In other words, with
a proper cutoff on the ordering provided by a perfect decision
system, the true state of the disease can be obtained for each
case in the dataset.

B. Modeling the errors made by a human reader

In order to compute the expected value of the performance
measurable for a perfect decision system, against a human
reader, we design a model of the errors made by human read-
ers against that perfect decision system. Our goal is to design
a model for an average human reader; as a consequence,
the Probability Distribution Function (PDF) of false positives
and of false negatives made by human readers are modeled
by “smooth” curves. We assume that the probability of errors
decreases as the cases become more obvious. By definition of
a perfect decision system, the degree of obviousness of a case
is directly related to the index of that case in the ordering
provided by a perfect decision system. As a consequence,
the PDF of false positives and of false negatives made by
human readers are modeled by smooth monotonic functions
of the index in that ordering. Cubic Bézier curves are used
in this paper to generate smooth monotonic curves [9].

1) Error model (see Fig. 1): the cases are ranked by
a perfect decision system along the x-axis, from the most
obviously normal to the most obviously abnormal. The index

more obviously normal more obviously abnormal

11−Px0

p

Fig. 1: Probability distribution function of the errors made
by a human reader. The normalized index of all the normal
cases, assigned by a perfect decision system, lie in the [0; 1−
P ] interval, where P is the true prevalence. That of all the
abnormal cases lie in the ]1− P ; 1] interval.

of a case in the ordering is normalized to the real interval
[0; 1], in order to make the model independent of the dataset
cardinality. The probability that a human reader classifies a
case x as normal if it is actually abnormal (false negative),
or as abnormal if it is actually normal (false positive), is
represented along the y-axis.

2) Cubic Bézier curves: let B0, B1, B2 and B3 be four
control points in R2. Given B0, B1, B2 and B3, a cubic
Bézier curve B(t), t ∈ [0; 1], is a parametric curve running
from B0 to B3 according to:

B(t) = (1−t)3B0+3(1−t)2tB1+3(1−t)t2B2+t
3B3 (1)

The curve’s derivative in B0 is directed by B0B1 and its
derivative in B3 is directed by B2B3.

3) PDF of false positives and of false negatives made
by human readers: let P be the prevalence and FPRHR

(resp. TPRHR) be the average false positive rate (resp. true
positive rate) of human readers. The false positive probability
for a case x ∈ [0; 1 − P ] is given by a Bézier curve PFP

meeting the constraint:∫ 1−P

0

PFP (x)dx = FPRHR (2)

The false negative probability for a case x ∈ [1 − P ; 1] is
given by another Bézier curve PFN meeting the constraint:∫ 1

1−P

PFN (x)dx = 1− TPRHR (3)

The observed prevalence, noted PHR, is given by:

PHR =

∫ 1−P

0

PFP (t)dt+

∫ 1

1−P

(1− PFN (t))dt (4)
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To ensure that PFP is a monotonically increasing function,
its control points BFP

0 , BFP
1 , BFP

2 and BFP
3 have to meet

the following constraints:

BFP
0 = (0, y0), y0 > 0 (5)

BFP
3 = (1− P, y3), y3 > y0 (6)

BFP
1 = (x1, y1), 0 ≤ x1 ≤ 1− P, y0 ≤ y1 ≤ y3 (7)

BFP
2 = (x2, y2), 0 ≤ x2 ≤ 1− P, y0 ≤ y2 ≤ y3 (8)

To ensure that PFN is a monotonically decreasing function,
its control points BFN

0 , BFN
1 , BFN

2 and BFN
3 have to meet

the following constraints:

BFN
3 = (1, y3), y3 > 0 (9)

BFN
0 = (1− P, y0), y0 > y3 (10)

BFN
1 = (x1, y1), 1− P ≤ x1 ≤ 1, y3 ≤ y1 ≤ y0 (11)

BFN
2 = (x2, y2), 1− P ≤ x2 ≤ 1, y3 ≤ y2 ≤ y0 (12)

There are six parameters per curve (y0, y3, x1, y1, x2, y2)
and 1 identity (see equations 2 and 3). As a consequence,
there are five free parameters per curve.

C. Computing the maximal measurable performance from
the human reader model

In order to compute the expected value of the AUC for a
perfect decision system, we have to define, for any cutoff x
(i.e. any case x), the True Positive Rate (TPR) and the False
Positive Rate (FPR) of this decision system against a single
human reader. Let TPRDS(x) be the expected value of the
FPR, and FPRDS(x) be the expected value of the TPR, for
any cutoff x. If x ≤ 1−P , TPRDS(x) and FPRDS(x) are
given by the following relations:

FPRDS(x) = 1− 1

1− PHR

∫ x

0

(1− PFP (t))dt (13)

TPRDS(x) =
1

PHR

(∫ 1

1−P

(1− PFN (t))dt

+

∫ 1−P

x

PFP (t)dt

) (14)

If x > 1−P , TPRDS(x) and FPRDS(x) are given by the
following relations:

FPRDS(x) = 1− 1

1− PHR

(∫ 1−P

0

(1− PFP (t))dt

+

∫ x

1−P

PFN (t)dt

)
(15)

TPRDS(x) =
1

PHR

∫ 1

x

(1− PFN (t))dt (16)

Finally, the expected value of the AUC for a perfect decision
system is given by [1]:

E(AUC) =

∫ 1

0

TPRDS(t)
∂FPRDS

∂t
(t)dt (17)

Equation 17 is approximated according to the trapezoidal
rule [10].

D. Parameter estimation

Given a prevalence P and the average TPR/FPR of human
readers (TPRHR/FPRHR), the proposed model has ten un-
determined parameters: five parameters per Bézier curve. The
parameters of the model are determined in a dataset where
the level of agreement between human readers, measured
by Cohen’s κ [11], is known. The parameters are chosen
such that, in this dataset, the difference between the observed
average κ and the expected value of κ (§II-D.1) is less than
the observed standard error of κ.

1) Expected value of κ between modeled human readers:
Cohen’s κ is defined as Pa−Pc

1−Pc
, where Pa is the probability

of agreement and Pc is the probability of chance agreement
between two human readers. Let A be the 2× 2 agreement
matrix, where A0,0 denotes the probability that both human
readers agree that a case is normal, A1,1 denotes the prob-
ability that both agree that a case is abnormal, and A1,0

(resp. A0,1) denotes the probability that only the first (resp.
the second) thinks a case is abnormal. Pa and Pc can be
expressed as follows:

Pa = A0,0 +A1,1 (18)

Pc = (A0,0+A0,1)(A0,0+A1,0)+(A1,0+A1,1)(A0,1+A1,1)
(19)

In our case, the expected value of A is given by the following
equations:

A0,0 =

∫ 1−P

0

(1− PFP (x))
2dx+

∫ 1

1−P

PFN (x)2dx (20)

A0,1 = A1,0 =

∫ 1−P

0

(1− PFP (x))PFP (x)dx

+

∫ 1

1−P

(1− PFN (x))PFN (x)dx

(21)

A1,1 =

∫ 1−P

0

PFP (x)
2dx+

∫ 1

1−P

(1− PFN (x))2dx (22)

2) Acceptable human reader model and maximal measur-
able performance: several sets of Bézier curve parameters
may lead to an acceptable human reader model, i.e. a human
reader model explaining the desired κ. As a consequence, the
maximal measurable performance is defined as the maximal
AUC measured for the perfect decision method against an
acceptable human reader model. Once the model parameters
have been determined, the model is valid in any dataset
regardless of the observed prevalence, provided that these are
read by human readers with similar performance (i.e. similar
average TPR and FPR), for example attained by similar levels
of clinical experience. Only parameter P needs to be changed
in equations 2 to 16.

E. Extension: performance of a perfect decision system
against a ’majority wins’ vote of three human readers

Now let us assume the same dataset has been read by
three different experts and the reference gold-standard is
defined as the ’majority wins’ vote of the three label vectors.
The performance of a perfect decision system against this
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TABLE I: Performance of the Iowa Detection Program

reference standard single reader three readers
expert 1 expert 2 expert 3 average consensus [12] majority wins

measured performance 0.940 0.926 0.921 0.929 0.937 0.955
confidence interval [3] [0.918-0.962] [0.902-0.950] [0.897-0.945] [0.897-0.962] [0.916-0.959] [0.939-0.972]

maximal measurable performance 0.956 ? 0.990

reference gold-standard can be modeled easily. Let p denote
the probability that an expert assigns a positive label to some
case c in the dataset. The probability that at least two readers
assign a positive label to c is given by p3 + 3p2(1 − p) =
p2(3−2p). Note that simulating a consensus of three experts
is much more complex and was not addressed in this paper.

III. APPLICATION TO DIABETIC RETINOPATHY
SCREENING

A. The Messidor2 dataset

Deidentified digital fundus color images of 1748 eyes in
874 people with diabetes were used. These images were
acquired in three DR screening programs in France (Paris,
Brest, St. Etienne) using a video 3CCD camera (Canon
Europe BV) on a Topcon TRCNW6 nonmydriatic fundus
camera (Topcon USA, Inc) with a 45◦ field of view centered
on the fovea [12], [13].

B. Performance of human readers in the Messidor2 dataset

Each case (two fundus color images from a patient) was
graded for retinopathy severity by 3 masked independent
retinal specialists and regraded with adjudication until con-
sensus. According to the reference gold-standard, defined as
the adjudicated label vector, the observed prevalence was
21.7%. The average TPR (resp. FPR) before adjudication
was 80.7% (resp. 2.3%) and the average κ was 0.822 [12].

C. Results

The parameters of the model described in section II were
adjusted to match the properties of the reference gold-
standard: P=21.7%, TPR=0.807, FPR=0.023 and κ=0.822.
The expected value of the AUC, measured by one human
reader for a perfect decision system, was estimated at 0.956
in the Messidor2 dataset. The expected value of the AUC,
measured by a ’majority wins’ vote of three experts, was
estimated at 0.990. As a comparison, the performance of the
Iowa Detection Program, against various reference standards,
is reported in table I.

IV. DISCUSSION AND CONCLUSIONS

The purpose of this study was to investigate the maximal
performance that can be meaningfully measured for an
automated decision system, given the characteristics of the
reference standard provided by human readers. A model
was proposed and applied to Diabetic Retinopathy (DR)
screening in a large dataset. The results show that our auto-
mated DR detection system has reached the maximal mea-
surable performance against a single human reader (0.897 ≤
0.956 ≤ 0.962 — see table I). In fact, measuring perfor-
mance improvements by automated DR detection systems

has become impossible, if each examination is annotated by
a single human reader. Second, the results show that using a
committee of human readers may lead to an increase in the
measureable performance level of automated DR detection:
an AUC of 0.990 can be measured, as opposed to 0.956
against a single reader. In that case, measuring performance
improvements is still possible (0.990 > 0.972 — see table
I). We expect our approach to be helpful to both guide
performance analysis of automated decision systems, as well
as help guide development of reference (test) datasets for
such systems. Specifically, in our domain, we expect it to
motivate the development of a reference gold-standard in a
larger DR detection dataset, which is a highly expensive,
time-consuming endeavor [14].
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[12] M. D. Abràmoff, J. C. Folk, and D. P. Han et al., “Automated analysis
of retinal images for detection of referable diabetic retinopathy,” JAMA
Ophthalmol, vol. 131, pp. 351–7, March 2013.

[13] G. Quellec, M. Lamard, G. Cazuguel, L. Bekri, W. Daccache, C. Roux,
and B. Cochener, “Automated assessment of diabetic retinopathy
severity using content-based image retrieval in multimodal fundus
photographs,” Invest Ophthalmol Vis Sci, vol. 52, pp. 8342–8, October
2011.

[14] E. Trucco, A. Ruggeri, and T. Karnowski et al., “Validating retinal
fundus image analysis algorithms: issues and a proposal,” Invest
Ophthalmol Vis Sci, vol. 54, pp. 3546–59, May 2013.

157


