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Abstract— Structural changes in the choroid, a layer located
between the retina and sclera, could indicate various vision
impairments. Consequently, ophthalmologists inspect optical
coherence tomography (OCT) scans of the posterior section
of the eye towards making diagnosis. With a view to assist
diagnosis, we propose an automated technique for segmentation
of the choroid layer. Specifically, we detect the upper and
lower boundaries of the choroid using structural similarity
and adaptive Hessian analysis. Subsequently, we detect choroid
vessels within those boundaries using a level set method.
Experimental results are presented using spectral domain (SD)
OCT images.

I. INTRODUCTION

Various vision impairments are indicated by reduction in
thickness and depletion of blood vessels in the choroid, a
layer located between the retina and the sclera in the posterior
part of the eye [1], [2]. Ophthalmologists ascertain choroid
health by visually inspecting optical coherence tomography
(OCT) images of the posterior visual section. With a view
to assisting them, we present an automated technique for
segmentation of the choroid layer, and detection of choroid
vessels in OCT images.

As shown in Fig. 1a, a typical OCT image depicts the en-
face image (left), and the cross-section at the dotted line on
the en-face image (right). The cross-section further depicts
retina, choroid, and sclera, respectively, from top to bottom.
The upper boundary of choroid is sharply demarcated by the
bright retinal pigment epithelium (RPE), the deepest sublayer
of retina. In contrast, the lower boundary with the sclera
is less dramatic, and will demand most of our attention.
Specifically, we shall use structural similarity (homogeneity)
of sclera to separate it from choroid, and refine the result by
adaptively thresholding the Hessian matrix at each point.

Based on choroid boundaries, thus detected, next we detect
choroid vessels using level set method. The level set is used
for iterative minimization of an energy function involving
the estimated mutual information between the rival classes to
achieve the segmentation. Upon convergence, the zero level
contour of the level set function is taken as the segmentation
boundary.

In view of the deep medical implications, unsurprisingly,
choroid segmentation has been widely studied. For instance,
a technique involving multiscale Hessian matrix analysis
and region growing has recently been reported [3]. Another
method makes use of 3D edge filtering and projection of
probability cones [4]. Graph-based multistage segmentation

(a)
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Fig. 1: (a) Typical OCT image (courtesy Dr. William R
Freeman, University of California, San Diego, La Jolla, CA),
and (b) Choroid upper boundary, choroid lower boundary and
choroid vessels indicated manually.

has also been attempted [5]. A connected components algo-
rithm has been applied on denoised and enhanced images
as well [6]. Unfortunately, despite certain attempts [7],
consensus on a standardized evaluation of algorithmic results
in terms of medical relevance is yet to evolve. In the mean-
time, it is worthwhile to explore the problem from various
perspectives. In this vein, we employ structural similarity,
Hessian analysis and level set method to attempt a solution.

We demonstrate our algorithm using spectral domain OCT
(SD-OCT) images. The detected boundary hugs the outer
envelope of choroidal vessels. Variation of choroid thickness
is also plotted. Finally, choroid vessels are detected, and
visually authenticated by experts. The organization of rest
he paper is as follows. The problem is formulated in Sec. II,
and mathematical preliminary is presented in Sec. III, while
Sec. IV describes the proposed methodology. Experimental
results are given in Sec. V. Finally, Sec. VI concludes the
paper.

II. PROBLEM FORMULATION

With a view to assisting ophthalmologists visualize the
choroid layer and vessels, we aim at automatizing the de-
tection of the choroid boundary and the segmentation of
choroidal blood vessels. For the ease of execution, we divide
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the problem into two distinct steps: (i) detection of choroid
boundary, and (ii) detection of choroidal vessels using the
detected choroid boundary. To this end, we shall leverage the
fact that choroid and sclera layers have different statistical
properties as evidenced by visual dissimilarity. Hence, we
formulate the problem in terms of perceptually quality metric
and Hessian matrix analysis for detecting choroid boundary.
On the other hand, unique statistical properties of choroidal
vessel are then exploited to segment those vessels using
a level set problem. Interestingly, a natural choice for the
energy functional turns out to be the mutual information.

III. MATHEMATICAL PRELIMINARY

In this section, we introduce a few mathematical notions.

A. Structural Similarity Index

The structural similarity (SSIM) index for two windows
A and B of equal size is given by [8]

SSIM(A,B) =
(2µAµB + c1)(2σAB + c2)

(2µ2
Aµ

2
B + c1)(σ2

A + σ2
B + c2)

,

where µA and µB denote the mean, and σ2
A and σ2

B denote
the variance of windows A and B, respectively, σAB is the
covariance, and c1 and c2 indicate small constants, chosen to
avoid certain technical difficulties. Later we shall use SSIM
of sclera to separate it from choroid.

B. Eigenvalue analysis of the Hessian matrix

Let J(q) denote the intensity at image location q = (x, y).
The second order approximation of J(q) around q = q0 is
given by [9]

J(q) = J(q0) + (q− q0)T∇J0 + 0.5(q− q0)T∇2J0(q− q0),

where ∇J0 denotes the gradient vector and ∇2J0 denotes
Hessian matrix at q0. Note that the Hessian matrix of image
J(q) is computed as

H = ∇2J(q) =

[
Jxx(q) Jxy(q)
Jyx(q) Jyy(q)

]
, (1)

where the entries are the second order partial derivatives.
Supposing λ1 and λ2 (λ1 < λ2) are eigenvalues of H, then
for points in tubular dark regions, λ1 is small and λ2 is large
[10]. We shall use this property towards detecting choroid
vessels.

C. Level set method for image segmentation

For a scaler function v(q) and region R whose boundary
is denoted by the curve

−→
C , define the energy functional

E(
−→
C (t)) as

E(
−→
C (t)) =

∫
R(
−→
C (t))

v(q) dq. (2)

The curve evolution that minimizes E(
−→
C (t)) in (2) is given

by the gradient flow equation [11]

∂
−→
C

∂t
= −v

−→
N, (3)

Fig. 2: Flow chart of proposed methology

where
−→
N denotes the inward normal. Notice that v(q) acts

as a velocity field. Defining a level set function φ such that−→
C (t) becomes its zero level contour, (3) maps to level set
evolution [12]

∂φ

∂t
= −v|∇φ|. (4)

One now needs to choose energy functional E(
−→
C (t)), and

hence level set function φ, for the binary segmentation of
image Γ. Of course, one desires

−→
C (t) to converge to the

decision boundary. Denote by R̂1 the region inside
−→
C (t), and

by R̂0 that outside. Equivalently, define the label function
L−→

C
(q) = i, if point q ∈ R̂i. Denoting by Q a location

random variable taking values q in Γ, it can be shown that
the mutual information I(J(Q);L−→

C
(Q)) is maximum when

label values for all pixel locations are correct [13], which
thus provides us the energy functional. Practically, one uses

E(
−→
C ) = −|Γ|Î(J(Q);L−→

C
(Q)) + α

∮
−→
C

ds, (5)

where Î(J(Q);L−→
C

(Q)) denotes estimated mutual informa-
tion,

∮
−→
C
ds the length of the curve, α a scalar weight, and

|Γ| the total number of pixels in the image. The last distance
regularization term in (5) helps in practical implementation
[14].

From (5), we derive the level set evolution equation as

∂φ

∂t
=

[
log(

p̂1(J(
−→
C ))

p̂0(J(
−→
C ))

) +
1

|R̂1|

∫
R̂1

K(J(q)− J(
−→
C ))

p̂1(J(q))
dq

− 1

|R̂0|

∫
R̂0

K(J(q)− J(
−→
C ))

p̂0(J(q))
dq

]
|∇φ|

−α
(
~∇ · (∇φ)

)
/|∇φ|, (6)

where probability densities p̂1 and p̂1 of respective classes
are estimated using Gaussian kernel [15].

167



IV. PROPOSED METHODOLOGY

In this section, we propose a hierarchical method for
detecting choroid boundary and choroid vessels as depicted
in Fig. 2. Specifically, we employ SSIM and Hessain analysis
for the former and a level set method for the latter.

A. Denoising and Localization of Choroid

To begin with, OCT images are denoised using the block-
matching and 3D filtering (BM3D) algorithm which takes ad-
vantage of underlying sparsity [16]. We localize the choroid
region below retina by exploiting the brightness of the RPE
region. Specifically, we make use of edge detection, dilation
and connected components [17]. Further, we take a region of
interest (ROI) of uniform thickness below RPE to accurately
locate the choroid. We flatten the ROI by removing the
inherent curvature for ease of processing.

B. Choroid Lower Boundary Detection

Observing that the sclera and the choroid layers have
very different structures, we take a small window from the
sclera as the template, and use the SSIM index to match
the remainder of the sclera. What remains left out is then
declared as the choroid. Specifically, SSIM is particularly
low near the lower edges of large choroid vessels. Note that
some outliers are expected, and removed using connected
components alogorithm. While our SSIM technique is gen-
erally effective, it does leave out certain areas of the choroid.
This gap is filled based on eignvalues of the Hessian matrix
by detecting dark tubular structures as mentioned earlier.

C. Choroid Vessel Detection

Once both the upper and the lower boundaries of the
choroid are detected, the level set method is used to segment
choroid vessels. The level set function is confined within
these boundaries, and initialized with a suitable step function.
Referring to Sec. III-C, now we label choroid vessels as
region R1 and rest of the choroid as R0. As noted, we
iteratively maximize certain mutual information that leads to
the desired decision boundary upon convergence. Next we
turn to presenting experimental results.

V. EXPERIMENTAL RESULTS

In this section, we illustrate effectiveness of the proposed
methodology. Our data-set consists of OCT images of the
posterior part of the eye taken with 30 µm separation. The
images are obtained using Heidelberg Retina Angiograph
(HRA - Spectralis, Heidelberg Engineering, Dossenheim,
Germany). We first detect the choroid boundaries and then
segment choroid vessels in 2D.

Fig. 3b shows the denoised version of image shown in
Fig. 3a using BM3D [16]. Subsequently, Fig.3c shows the
RPE upper boundary detected to localize the region of inter-
est and Fig.3d shows the extracted region of interest below
RPE. Notice that ROI is straightened for easier processing.
Fig. 3e shows the initial output after applying SSIM. There
are some outliers dectected in sclera, which are removed
by connected components and the corresponding result is

(a) Original OCT image.

(b) Image after denoing.

(c) Detected edge above RPE.

(d) Extracted region of interest below RPE.

(e) Initial SSIM output.

(f) Removing outliers using connected components.

(g) Choroid boundary detected finally by using only SSIM.

(h) Seamless choroid boundary after adaptive Hessian.

(i) Choroid vessels segmented using level set method

Fig. 3: Denoising, localization of choroid, choroid boundary
and vessel detection.

Fig. 4: Choroid thickness variation plot

shown in Fig. 3f. Subsequently, we choose the envelope to
get final SSIM output (see Fig. 3g). Notice that, Fig. 3g
shows gaps in the choroid boundary. The missing portion
of the boundary is recovered using an adaptive Hessian
technique. Fig. 3h shows the final choroid boundary after
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(a) (b)

(c) (d)

Fig. 5: (a) and (b): Detected choroid boundary of different OCT images; (c) and (d): Large and medium sized choroidal
vessels detected in corresponding images (a) and (b).

combing adaptive Hessian output with of the SSIM output.
Level set requires proper initialization to detect only the
vessels present in choroid, therefore the boundary is used as
limits for initialization for the choroid vessel segmentation.
Fig. 3i shows the final segmentation. It can be observed that
large and medium sized vessels are detected with reasonable
accuracy.

Fig. 4 gives thickness plot of the choroid layer of image
given in Fig. 3a. This provides the variation of the thickness
along the length of the OCT image. Finally, we present
repeatability of our algorithm by applying it to different OCT
images. Fig. 5 shows the results for detection of choroid
boundary and choroid vessels for two different OCT images
apart from that of shown in Fig. 3a.

VI. DISCUSSION

In this paper, we proposed a novel approach for choroid
boundary detection using SSIM and adaptive Hessian anal-
ysis. Further, we proposed a level set technique for choroid
vessel segmentation. Experimental results for both the meth-
ods are presented. We note that the choroid boundary marked
by experts generally is a smooth curve below choroid vessels,
while the boundary detected using proposed method hugs
those vessels. To detect the expected boundary, further work
and more advanced techniques are needed. At the same time,
2D segmentation of choroid vessels aid in diagnosis only
to a limited extent. It does not provide complete sense of
choroidal vasculature and corresponding thickness variation
in space, for which one should be able visualize choroid
vessels in 3D. In future, we shall extend our results to 3D by
stacking the segmented 2D choroid vessels with appropriate
geometric alignment, and visualize in true 3D on a lightfield
display.
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