
  

 

Abstract— Polysomnography (PSG) studies are considered 

the “gold standard” for the diagnosis of Sleep Apnoea (SA). 

Identifying cessations of breathing from long-lasting PSG 

recordings manually is a labour-intensive and time-consuming 

task for sleep specialist, associated with inter-scorer variability. 

In this study a simplified, semi-automatic, three-channel 

method for detection of SA patients is proposed in order to 

increase analysis reliability and diagnostic accuracy in the 

clinic. The method is based on characteristic features, such as 

respiration stoppages pr. hour and the total number of oxygen 

desaturations > 3%, extracted from the thorax and abdomen 

respiration effort belts, and the oxyhemoglobin saturation 

(SaO2), fed to an Elastic Net classifier and validated according 

to American Academy of Sleep Medicine (AASM) using the 

patients’ AHI value. The method was applied to 109 patient 

recordings and resulted in a very high SA classification with 

accuracy of 97.9%. The proposed method reduce the time spent 

on manual analysis of respiration stoppages and the inter- and 

intra-scorer variability, and may serve as an alternative 

screening method for SA.  

I. INTRODUCTION 

SA (obstructive and central) is a common sleep disorder. 

Obstructive sleep apnoea (OSA) is characterized by 

complete or partial repetitive upper airway obstruction and is 

the most common type of SA: it affects more than 2% of 

children, more than 5% of adults and is associated with 

significant morbidity, mortality and societal burden. [1] 

 The severity of SA is defined by the number of apnoea 

and hypopnea events, lasting longer than 10 seconds, per 

hour of sleep (apnoea/hypopnea index–AHI). [2] SA is 

usually diagnosed when the patient has AHI ≥ 5 events/h 

accompanied with excessive daytime sleepiness and/or 

cardiovascular morbidity.  

 PSG studies, a routine examination performed on 

numerous sleep laboratories throughout the world, are 

considered the “gold standard” for the diagnosis of SA and 

other sleep disorders. Identifying cessations of breathing 

from long-lasting PSG recordings manually is a labour-

intensive and time-consuming and associated with inter- and 

intra-scorer variability [3,4], making the diagnosis of SA 

underestimated considering general health check-ups. An 

efficient and more accessible computer-assisted system for 
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detection of SA would thus offer a powerful clinical 

diagnostic tool from the perspective of analysis reliability, 

diagnostic accuracy, efficiency and economic burden. 

Several automatic methods have been proposed for feature 

extraction, reduction and recognition of cessation of 

breathing, and assessed on various biomedical signals, with 

very good results [5-8]. However, most studies only 

included patients with moderate and severe SA, since mild 

SA most often do not require treatment. Also, most methods 

are more advanced than needed and designed for real-time 

monitoring of SA.  We propose a simplified, efficient, semi-

automatic, three-channel method for detection of SA 

patients, based on characteristic features, fed to an elastic net 

and validated according to international standards [2].  

II. MATERIALS 

A. Data selection 

A total of 109 subjects, divided into six different patient 

groups, were included in this study: 19 healthy subjects, 19 

patients with increased periodic leg movements (PLM), 20 

patients with idiopathic Rapid eye movement (REM) 

behaviour disorder (iRBD), 18 SA patients, 20 SA patients 

with PLM and 13 SA patients with RBD, see Table I for 

demographic details on the patients and Table II and III for 

AHI distribution.  

TABLE I: Demographic patient details (mean   95% CI) 

Group Subjects (n) Age (year) BMI (kg/m2) Females (n) 

Healthy 19                     14 

PLM 19                     9 

iRBD 20               4 

SA 18                      5 

SA/PLM 20                    7 

SA/iRBD 13                    2 

Total 109    
 

TABLE II: Subject AHI distribution 

AHI # train subjects # validation subjects 

AHI 5-15   (mild) 15 4 
AHI 15-30 (moderate) 13 2 

AHI > 30   (severe) 10 7 
 

TABLE III: Group AHI distribution 

Group AHI (mean 95% CI) 

Healthy          

PLM            

iRBD            

SA              

SA/PLM              

SA/iRBD              

 

Patient groups such as PLM and iRBD patients are included 

in the study in order to design a model as generic as 

possible. 
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The two groups form, together with the healthy subjects, a 

SA negative group.  Due to the prevalence of the disorders 

the gender distribution in the iRBD and SA groups are 

mismatched. The enrolled subjects were all diagnosed and 

scored by sleep specialists according to the international 

AASM standard. That is, in this study subjects with an AHI 

above 5 are considered to have SA even though they do not 

need treatment. Also, subjects with PLM index above 5 

(PLMI > 5) are considered to have PLM.  

B. Polysomnographic recording  

All 109 patients underwent a diagnostic full-night 

polysomnography (PSG), recorded at the Danish Centre for 

Sleep Medicine, Glostrup hospital, Denmark, involving 6 

channel electroencephalography (EEG) (F3-A2, F4-A1, C3-

A2, C4-A1, O1-A2 and O2- A1), electromyography (EMG) 

(chin, tibialis left, tibialis right), horizontal and vertical 

electrooculography (EOG), electrocardiography (ECG), 

respiration (nasal flow, thorax and abdomen respiration 

effort belts) and finally SaO2. Approximately seven to eight 

hours of sleep per subject were available when using data 

from lights-off to lights-on. The data were not visually 

inspected for electrode discontinuities and artefacts. 

Specialists scored the sleep stages manually, according to 

the standard from the AASM [2].  

In this study, the two respiration signals; thorax and 

abdomen respiration effort belts, the SaO2, together with the 

manually scored hypnograms, were used in order to 

distinguish SA patients from the SA negative group. The 

two respiration effort signals, and the SaO2 signal were 

recorded using sampling frequencies of 256Hz and 1Hz 

respectively, and recorded using filter settings within the 

AASM recommendations (0.1 Hz – 15 Hz).  

III. METHODOLOGY 

The detection process involves a processing step, 

followed by feature extraction and reduction. Finally, each 

recording is then classified as normal or abnormal.  

A. Biomedical signal pre-processing   

 All data between lights-off and lights-on was pre-

processed and used. The two respiration effort signals were 

low pass filtered using a 4
th

 order Butterworth filter with a 

3dB cut-off frequency 0.7Hz [8]. To reduce the data size the 

signals were down sampled to 4Hz using a low pass FIR 

filter. In order to avoid interference from high amplitude 

outliers, outliers were removed from both signals using the 

following histogram method. The data was binned into 50 

containers according to amplitude. Samples within 

containers containing less than 0.3% of the total amount of 

data were removed. The number of bins and the removal 

threshold was found by trial and error. Furthermore, the data 

is normalized using the min-max method, scaling the data 

between       , cf. eq. (1). 

 ̅    
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The SaO2 signal was restricted to saturation values between 

70%-100%, since values below 70% are unreliable due to 

the recording equipment. 

B. Feature extraction  

Following the pre-processing steps, SA characteristic 

features from the respiration signals were calculated from 

the manually scored sleep epochs.  
 

1) Respiration Stop Index (RSI): This feature is inspired 

by the AHI, and is therefore an estimate of the number of 

respiration stops longer than 10 seconds per hour. First, 

positive peaks above a pre-defined threshold (K) are 

detected, K = 0.61. This is executed by comparing the 

amplitude value of each sample with a reference window 

containing 5 samples. The threshold and window size are 

both chosen based on a trial and error method. Second, 

the distance between each detected positive peak larger 

than 10 seconds is stored as a respiration stop, and the 

average number of respiration stops per hour is saved as 

the RSI feature. In Fig.1 the peak detection is illustrated.    

 
Fig. 1. An example of respiration stops in the respiration signal from the 

abdominal effort belt and the positive peaks detected above a threshold of  

K = 0.61. In this segment 8 respiration stops were detected (red lines). 

2) Amount of REM and NREM sleep, and number of 

transitions: These three features are extracted from the 

manually scored hypnograms. Patients with SA have 

extremely fragmented and poor quality sleep, hence they 

do not stay in one sleep stage as long as healthy subjects 

due to full or partial awakenings caused by the disorder.  
 

3) Frequency based features: Segments with normal, 

slow, rapid or no respiration are characterized by 

different frequencies; hence, the total energy in these 

different bands may distinguish healthy subjects from 

apnoea patients. The total energy, cf. eq. (2), in four 

different frequency bands,        , were extracted 

from the two pre-processed respiration effort signals 

using 4
th

 order band pass Butterworth filters: 

 Ultra low frequency (ULF): 0.00001  – 0.013Hz 

 Very low frequency (VLF): 0.013   – 0.0375Hz 

 Low frequency  (LF):   0.0375  – 0.06Hz 

 High frequency (HF):   0.17   – 0.28Hz 

The signals were segmented into N number of 30 

seconds epochs after filtering. The total energy of each 

band is given by: 
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Fig. 2. Illustration of the discriminative property of feature 9 for all 109 

subjects, cf. Table IV. 1: control. 2: iRBD. 3: PLM. 4: SA. 5: SA/iRBD. 6: 

SA/PLM. BLACK: SA negative group. RED: SA positive group. 

                        ∑ |  |
  

           (2) 
 

4) Number of desaturations greater than 3%: This 

feature is extracted from the restricted SaO2 signal. First, 

each sample is investigated in relation to a reference 

window of 15 prior samples. All samples representing a 

drop in saturation compared to the median saturation in 

the reference window are stored. Second, the degree of 

desaturation is calculated and the total number of 

desaturations greater than 3% is saved as a feature.      

C. Feature reduction and classification  

The dataset was divided into training, test and validation 

sets. One fourth of the 109 patients, total of 28 subjects, 

were randomly selected within each patient group and saved 

for later validation. The remaining 81 subjects were used for 

feature investigation and selection, determination of 

parameters, threshold values and more.  

For feature reduction and classification a penalized least 

squares method, called the elastic net regularized regression 

[9], was applied. Unlike traditional classifiers, such as 

Support Vector Machine (SVM) and Gaussian Mixture 

Model (GMM), the elastic net performs simultaneous 

automatic variable selection, continuous shrinkage and 

grouping of correlated variables [9]. The elastic net solution 

is a convex combination of both the lasso and ridge penalty. 

For an α strictly between 0 and 1, elastic net solves the 

optimization problem: 

                 (
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N is the number of observations,    is the response at 

observation i,    is the data at observation i,   is a positive 

regularization parameter and the parameters   and    are 

scalar. The function   ( ) is the elastic net penalty term, 

which is a convex combination of the lasso and ridge 

penalty. When α = 1, the elastic net becomes simple ridge 

regression. [9] The 10-fold-cross validation was applied to 

the training data to obtain optimum alpha value in terms of 

performance. The final model was re-trained using the 

complete training set and optimum alpha, and further 

assessed on the independent validation set. The model output 

is the class probability. For validation purposes the class 

threshold for SA was set at      probability of SA. The 

final output, apnoea patient or not, is validated according to 

the patients’ AHI value and not the manually scored 

hypnograms or temporal placement of the respiration 

stoppages. 

The area under the receiver operating characteristic 

(ROC) curve, called AUC, the sensitivity, cf. eq. (5) and 

specificity, cf. eq. (6) was computed and used as 

performance measures. 
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IV. RESULTS 

The generalization performance of a classifier depends 

primarily, on the selection of good features, i.e., features 

resulting in maximum separation between the classes. The 

feature reduction was performed, using the elastic net 

algorithm during the training of the classification model. The 

optimal parameter   was found at 0.90 and a total of 13 

features were found to be of importance to the classification, 

cf. Table IV.  

TABLE IV: Unsorted list of the most optimal feature set 

# Signal channel Selected feature 

1 Abdominal effort belt RSI 

2-5 Abdominal effort belt ULF, VLF, LF, HF 

6 Hypnogram  Amount of REM sleep 

7 Hypnogram Amount of NREM sleep 

8 Hypnogram  Number of transitions 

9 SaO
2
 Number of desaturations > 3% 

10 Thoracic effort belt RSI 

11-13 Thoracic effort belt ULF, VLF, HF 

The most optimal feature was found to be feature 9, the 

number of desaturations > 3%, cf. Fig. 2. This feature, by 

itself, shows a performance of 97.7% specificity and a 

sensitivity depending on the severity of the SA: 5   AHI < 

15 – 46.7%, 15   AHI < 30 – 75% and AHI   30 – 100%. 

In Fig. 3 the correlation between the AHI determined by a 

specialist via manually inspection and feature 9 is illustrated, 

the correlation value is       .  

 

The model performance obtained with the optimal feature 

subset shows that patients with SA could be separated from 

subjects without, using the presented method, with a very 

high accuracy, AUC of 97.9%, sensitivity depending on the 

severity of SA and a very high specificity on the test data, cf. 
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Table V. The unseen validation data, consisting of 5 

controls, 5 PLMs, 5 iRBDs, 5 SA, 5 SA/PLM and 3 

SA/iRBD patients, was classified with a high accuracy, 

AUC of 100%, a sensitivity of 100% and a specificity of 

100%.  

 
Fig. 3. The correlation between the AHI determined by a specialist via 

manually inspection and feature 9. BLACK: SA negative group. RED: SA 

positive group. 

TABLE V: Classification performance (correctly classified/#subjects) 

 Test data Unseen validation data 

AUC 97.9% 100% 
Sensitivity 86.8%   (33 of 38) 100%    (13 of 13) 

Sensitivity  

AHI 5-15 

66.7%  (10 of 15) 100%    (4 of 4) 

Sensitivity 

AHI 15-30  

100%   (13 of 13) 100%    (2 of 2) 

Sensitivity 

AHI > 30 

100%   (10 of 10) 100%    (7 of 7) 

Specificity 95.4%   (41 of 43) 100%    (15 of 15) 

V. DISCUSSION 

We found that our method can separate patients with SA 

from subjects without, with an accuracy of 97.9% on the test 

data and 100% on the unseen validation data, and that 

feature 9 correlates well with the AHI,       . These 

results are comparable or better than former methods based 

on respiration signals and electrophysiological signals [5-8].  

The present method is robust and the model highly 

accurate for patients with moderate and severe SA, AHI > 

15. All misclassified SA patients has an AHI lower than 

12.6. The relatively low AHI makes it difficult to distinguish 

these subjects from the SA negative group. The test results 

show that the patient group SA/iRBD is the most difficult to 

classify. 4 of 13 patients in this group were misclassified. An 

explanation of the difference in performance between the 

different groups could be the difficulties associated with 

manually scoring of sleep. Due to the disorder, iRBD, it may 

be difficult to distinguish between REM sleep and awake, 

consequently the misclassified REM sleep is not investigated 

for respiration stoppages. The proposed method reduce the 

time spent on manual analysis of respiration stoppages, from 

approximate 1 hour to 1 minute, using a standard 2.4GHz 

MacBook pro and MATLAB R2011b, and reduce the inter- 

and intra-scorer variability due to the automation.  

Limitations of the study include the use of data recorded 

at only one sleep lab with only one type of sensor. The 

method needs to be tested on external data recorded with 

different sensors and amplifiers in order to validate its 

general performance and usability. Furthermore the method 

is dependent on the manually scored hypnograms, which 

limits the use as a potential screening method for SA.  

VI. CONCLUSION 

The semi-automatic method is able to achieve excellent 

and comparable performance using respiration signals, SaO2 

and the manually scored hypnograms, AUC of 97.9%, which 

is easy to measure and clinically acceptable. The proposed 

method reduce the time spent on manual analysis of 

respiration stoppages, from approximate 1 hour to 1 minute, 

and the inter- and intra-scorer variability, and may, together 

with a future automatic sleep stager, serve as an alternative 

screening method for SA. 

VII. ACKNOWLEDGEMENT 

Laura Graves Ponsaing and Rune Frandsen from the 

Danish Centre for Sleep Medicine, Glostrup Hospital, 

Denmark, has been a great support to this work regarding the 

choice of SA and RBD patients.  

REFERENCES 

[1] P. Jennum, J. Kjellberg. Health, social and economical consequences 

of sleep-disordered breathing: a controlled national study. Thorax. 

2011, Jul;66(7):560-6. 
[2] C. Iber, S. Ancoli-Israel, A. Chesson, and S. Quan, The AASM manual 

for the scoring of sleep and associated events: rules, terminology, and 
technical specification, 1st ed. Westchester, IL: American Academy of 

Sleep Medicine, 2007. 

[3] U. J. Magalang, N. H. Chen, P. A. Cistulli PA, et al., Agreement in the 
scoring of respiratory events and sleep among international sleep 

centers. Sleep, 2012, Volume 35, Issue Suppl. S, pp. A425. 
[4] S. T. Kuna, R. Benca, C. A. Kushida, et al., Agreement in computer-

assisted manual scoring of polysomnograms across sleep centers. 

Sleep. 2013, Volume 36, Issue 4, pp. 583-589. 
[5] E. Goldshtein, A. Tarasiuk, and Y. Zigel, Automatic Detection of 

Obstructive Sleep Apnea Using Speech Signals, IEEE Transactions on 

biomedical engineering 2011, Volume 58, Issue 5, pp. 1373-1382.  

[6] L. Almazaydeh, K. Elleithy, M. Faezipour, Detection of Obstructive 
Sleep Apnea Through ECG Signal Features, EIT, 2012 IEEE 
International Conference on 6-8 May 2012, pp.1 – 6. 

[7] Z. Moussavi and A. Yadollahi, Acoustic obstructive sleep apnea 
detection, Biology Society: Engineering the Future of Biomedicine, 
EMBC 2009 — 2009, Volume 2009, pp. 7110-7113. 

[8] N. Selvaraj and R. Narasimhan, Detection of Sleep Apnea on a Per-
Second Basis using Respiratory Signals, 35th Annual International 
Conference of the IEEE EMBS Osaka, Japan, 3-7 July, 2013.  

[9] H. Zou and T. Hastie, Regularization and variable selection via the 
elastic net, J. R. Statist. Soc. B (2005). 67, Part2, pp. 301-320.  

261


