
  

  

Abstract— Infants recovering from general anesthesia are at 
risk of postoperative apnea (POA), a potentially life threatening 
event. There is no accurate way to identify which infants will 
experience POA, and thus all infants with postmenstrual age < 
60 weeks are monitored for apnea in hospital postoperatively. 
Using a comprehensive, automated analysis of the 
postoperative breathing patterns, we identified the occurrence 
of respiratory pauses in 24 infants at age risk for POA. We 
determined the POA category for each infant by using K-
medoids to cluster the duration of the longest respiratory 
pause. Two clusters were identified, corresponding to APNEA 
and NO-APNEA, with a threshold of 14.6 s, a value consistent 
with the clinically accepted threshold of 15 s. K-medoids 
derived POA labels were used to evaluate the predictive ability 
of demographic and anesthetic management variables.  Weight 
and the intraoperative doses of atropine, propofol, and opioids 
discriminated between the APNEA and NO-APNEA groups. A 
linear Gaussian discriminant analysis classifier provided a very 
good classification with a probability of detection PD = 0.73 and 
a probability of false alarm PFA = 0.22. This approach provides 
a promising tool for the systematic, objective study of infants at 
risk of POA. 

I. INTRODUCTION 

Infants recovering from surgery and anesthesia are at 
increased risk of life threatening postoperative apnea (POA) 
[1, 2], a clinical entity associated with respiratory pauses in 
excess of 15 s. Risk factors identified to date include: age, 
prematurity, associated medical conditions, and the use of 
some anesthetic medications, including opioids. Although 
postmenstrual age (PMA) less than 60 weeks is an important 
risk factor  [1, 3, 4], there is as yet no way to predict which of 
these infants will experience apnea [3]. Consequently, 
although POA occurs in only approximately 30% of infants 
[4], clinical practice guidelines recommend postoperative  
monitoring of all at risk infants [1]. 

Postoperative apneas are relatively rare events and 
consequently long postoperative cardiorespiratory records 
from many infants are required to study POA.  Furthermore, 
the preferred method of analysis is manual scoring [5], which 
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is labor intensive, expensive and suffers from low inter-
scorer agreement [6]. These two factors have limited the 
acquisition and analysis of appropriate data sets. 

To overcome this we developed AUREA [7], an 
Automated Unsupervised Respiratory Event Analysis system. 
AUREA automatically analyses the respiratory behavior 
classifying the respiratory state at each point in time into one 
of four categories: Pause, Movement Artifact, Asynchronous- 
and Synchronous-Breathing. This is achieved by K-means 
clustering [8] on metrics that extract the amplitude, frequency 
and phase information from the ribcage and abdomen signals 
obtained from respiratory inductive plethysmography (RIP). 

The first objective of this study was to establish an 
automated, standardized way to define POA based on the 
occurrence of long respiratory pauses identified by AUREA, 
contrasted to the traditional approach based on clinical 
judgments at the bedside. The second objective was to 
combine this objective POA definition with demographic 
data and variables in the anesthetic management to train a 
classifier and assess its predictive ability. 

The paper is organized as follows: Section II describes 
the subjects and data; Section III shows the analysis of the 
postoperative respiratory behavior and the definition of POA 
categories; Section IV presents the feature selection strategy 
and describes the classifiers used to predict POA occurrence; 
Section V gives the prediction results; and Section VI 
discusses the findings and provides concluding remarks. 

II. MATERIALS 

A. Subjects 

Twenty four infants (19 male, 3.7 ± 1.0 kg, PMA of 43 ± 
2 weeks) who underwent elective general anesthesia for 
inguinal herniorrhaphy, and were at age risk for POA were 
recruited and studied in the Postanesthesia Care Unit (PACU) 
of the Montreal Children’s Hospital (MCH). Table I gives 
demographic data and details of the anesthetic management 
including drug administration and dose. 

Inclusion criteria were: (1) PMA < 60 weeks at the time 
of surgery for preterm infants and < 48 weeks for term 
infants; and (2) American Society of Anesthesiology physical 
status 1 or 2. Exclusion Criteria were: (1) emergency surgery; 
and (2) spinal anesthesia. The study was approved by the 
Institutional Review Board of McGill University Health 
Centre/MCH, and informed written parental consent was 
obtained for each infant. The anesthetic management was not 
standardized. 
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B. Data Acquisition 

Upon arrival at the PACU, infant respibands (Ambulatory 
Monitoring Inc., Inductobands, Ardsley, NY) were placed 
around the infant’s ribcage and abdomen and interfaced with 
Respiratory Inductive Plethysmograph (Ambulatory 
Monitoring Inc., Battery Operated Inductotrace, Ardsley, 
NY).  No attempt was made to calibrate the RIP signals in 
absolute terms. An infant oximeter probe (Nonin 8600 
Portable Digital Pulse Oximeter, Plymouth, MN) was taped 
to a digit.  The outputs were low-pass filtered (cut-off 
frequency 10 Hz) with an 8-pole Bessel anti-aliasing filter 
(Kemo, Jacksonville, FL), digitized, sampled at 50 Hz, and 
recorded on a computer using MATLABTM (The MathWorks 
Inc., Natick, MA) for off-line analysis. This acquisition 
system is described in [9]. Data were acquired for 9.0 ± 2.2 
hours. Subsets of these data have been reported in other 
studies [7, 10, 11]. 

In parallel, infants were independently and continuously 
monitored clinically with a thoracic impedance respiratory 
monitor, a pulse oximeter and an electrocardiogram. The 
thoracic impedance apnea alarm threshold was set to 15 s. 

III. DETERMINATION OF POA CATEGORIES 

A. Classification based on Clinical Judgment 

The acquisition session was continuously attended by at 
least one of the investigators, who kept a paper record of 
apneas and the infant’s behavior (e.g., sleeping, feeding, 
diaper change, etc.). At the end of the acquisition session, an 
investigator (KAB) classified each infant as either Apneic or 
Non-Apneic by clinically judging the investigators’ paper 
record and annotations in the medical dossier. 

B. Classification based on Pause Length Evidence 

The rationale for the 15 s pause length clinical definition 
of POA is unclear; it is based on physicians’ personal 
experience and subjective clinical judgment. Consequently, 
we developed an objective procedure to determine POA 
categories. The procedure used unsupervised learning to 
categorize patients based on the length of respiratory pauses. 
Thus, the RIP data for each infant were analyzed with 
AUREA to identify all respiratory pauses. K-medoids [12], 
an unsupervised learning technique robust to outliers, was 
used to cluster subjects according to their maximum pause 
duration into 3 groups: short, medium and long. Infants in the 
short duration cluster were assigned to the NO-APNEA 
group. The long duration cluster only contained 3 infants, so 
it was combined with the medium duration group to form a 
single APNEA group. Fig. 1 shows the APNEA and NO-
APNEA groups separated by the pause duration threshold of 
14.6 s indicated by the vertical line. 

C.  Clinical Judgment vs. Evidence-Based Classification 

 The results of the K-medoids clustering classification 
were compared to those based on clinical judgment. It is 
noteworthy that the evidence-based threshold (14.6 s) 
corresponded closely to the 15 s pause duration used 
clinically to define POA [1]. 

However, Fig. 1 shows that there was substantial 
disagreement; thus 6 out of 15 (40%) infants who had pauses 
longer than 14.6 s (i.e., the evidence-based APNEA group) 

were clinically judged to be Non-Apneic (black-triangle), and 
conversely four out of 9 (44%) infants with pauses shorter 
than 14.6 s (i.e., evidence-based NO-APNEA group) were 
considered Apneic by clinical judgment (red-circle). 

For this work, we defined the POA categories based on 
objective measurements of pause length as described above. 
This because the procedure evaluated in detail the respiratory 
behavior during the PACU stay, and thus was more precise 
detecting respiratory pauses and estimating their duration, 
compared to a combination of nurses’ notes based on bedside 
monitor alarms and acquisition session annotations. 

IV. PREDICTION OF POA OCCURRENCE 

A. Predictive Ability of Features (Univariate Analysis) 

Having established an objective method to determine 
which infants experienced POA, we analyzed the ability of 
the demographic and anesthetic management variables listed 
in Table I to predict the APNEA classification resulting from 
our automated analysis. To this end we used the Wilcoxon 
rank sum test [13] for real-valued variables, and the Fisher’s 
exact test [14] for categorical variables, to evaluate for 
statistically significant differences between POA groups. 

B. Feature Selection (Multivariate Analysis) 

To evaluate the predictive ability of combinations of 
variables form Table I, it was necessary to select the 
combination(s) that would optimize the prediction of POA 
occurrence using classifiers. To this end, we applied the 
feature selection strategy described next. 

Features considered were the variables listed in Table I 
and the square of the real-valued variables. Features from this 
set were selected based on a Most Discriminative and Least 
Correlated (MDLC) criteria as follows: 

(1) Create an empty list of selected features, 

(2) Estimate the p-value of each feature, 

(3) Add the feature with lowest p-value to the list, 

(4) Discard all features with p-value > γpval, 
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Fig. 1.  Classification of subjects according to the occurrence of
postoperative apnea (POA). The blue line indicates the threshold obtained
with the evidence-based automated analysis; NO-APNEA infants are
located on the left side and APNEA infants on the right side. The symbols
show the classification based on clinical judgment (Non-Apneic: black
triangles, Apneic: red circles). The y-axis is a random value used for
visualization. 
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(5) Estimate the correlation between the features in the 
list and the remaining input features, and discard all 
those with an absolute correlation > γcorr, 

(6) Add the remaining feature with lowest p-value to the 
selection list, 

(7) Repeat from (5) until no more features are available. 

C. Discriminant Analysis Classifiers 

The features selected were used to train and test 
classifiers based on Gaussian discriminant analysis (DA). 
These classifiers included the classical Linear and Quadratic 
DA (cLDA and cQDA respectively), which use the classic 
estimators of Gaussian parameters, and the robust Linear and 
Quadratic DA (rLDA and rQDA respectively), which use 
estimators of Gaussian parameters that are robust to outliers 
[15]. Classifiers were implemented using the library for 
robust analysis (LIBRA) toolbox [16]. 

D. Classifier Performance Evaluation 

Classifiers were evaluated with a leave-one-out cross-
validation approach. The data set was split into two disjoint 
subsets: (1) testing, with data from one infant; and (2) 
training, with data from the remaining infants. The training 
set was used to estimate the parameters of the DA classifiers, 
and then the resulting model was used to classify the testing 
set. This was repeated using a different test set for all 
subjects. Note that feature selection was performed separately 
for each iteration, and thus was independent of the testing set. 
The detection probability (PD) was estimated as the 
proportion of subjects correctly identified as APNEA (i.e., 
they were part of the APNEA group); the probability of false 
alarm (PFA) was the proportion of subjects incorrectly 
identified as APNEA (i.e., they were in the NO-APNEA 

group). The PD and PFA of each classifier were evaluated for 
the testing set and for each iteration of the training set. 

Each pair of PFA and PD corresponds to a point on a 
Receiver Operating Characteristic (ROC) curve, which 
describes the classifier performance. A perfect classification 
corresponds to PFA = 0 and PD = 1, whereas the performance 
expected by chance is at the line PFA = PD. The relation 

( ) 1

2 2
D FA

D FA

P P
d P P

−
= = − , (1) 

defines the normalized distance of any point on the ROC 
curve from the chance line. A d = 0 corresponds to a PD and 
PFA combination that lies on the chance line, while d = 1 
indicates perfect classification. A larger distance corresponds 
to a better combination of PD and PFA. We used (1) to 
evaluate overall performance and select the best classifier. 

V. RESULTS 

A. Anesthetic Management 

 The median duration of surgery/anesthesia was 90 min 
with an interquartile range of 32.5 min; differences between 
POA groups were not statistically significant. Drug regimens 
differed because anesthetic management was not 
standardized. At the induction of anesthesia, all infants 
received atropine, and 21 received propofol. Another infant 
received a dose of propofol at the end of surgery. One infant 
received a second dose of atropine at the time of extubation. 
The total atropine dose administered during anesthesia is 
defined as intraoperative atropine dose. The maintenance 
anesthetic agent was either sevoflurane (n = 14) or desflurane 
(n = 10); the choice of agent was not significantly different 
between groups.  An opioid was administered to 16 infants 
(fentanyl = 10, sufentanil = 2, remifentanil = 4). To account 
for the use of different intraoperative opioids, their doses 
were converted to intraoperative morphine equivalents 
(IOME) [17] based on: 10 μg fentanyl = 1 mg IOME, 1 μg 
sufentanil = 1 mg IOME, and 1 μg remifentanil = 0 mg 
IOME. Acetaminophen was administered to 21 infants. 
Rocuronium was administered to 12 infants and the muscle 
relaxant was antagonized with neostigmine and atropine. This 
atropine dose was referred to as the reversal atropine dose. 

B. Predictive Ability of Individual Variables 

 Table I shows the demographic and clinical variables for 
the two POA groups and their associated p-values.  In the 
APNEA group, the weight was significantly lower (p = 0.06), 
and the intraoperative doses of atropine (p = 0.01), propofol 
(p = 0.04), and IOME (p = 0.07) were significantly larger. 

C. Feature Selection 

A p-value threshold of γpval = 0.1 and a correlation 
threshold of γcorr = 0.1 were used for feature selection. Table 
II shows the feature sets selected and the proportion of cross-
validation iterations where each set was selected. It is clear 
that the intraoperative atropine dose was the most important 
feature since it was selected in all iterations. In about 2/3 of 
the cases it was accompanied by the propofol dose squared. 

TABLE I.  PREDICTIVE ABILITY OF DEMOGRAPHIC AND ANESTHETIC 
MANAGEMENT VARIABLES 

Variable 
p-

value 
NO-APNEAa 

(n = 9) 
APNEAa

(n = 15) 

Demographics 

Weight (kg) 0.06 4.2 [1.4] 3.5 [1.0] 

Gender (male %) 0.29 89 73 

Gestational Age (weeks) 0.59 34 [6] 31 [7] 

Postmenstrual Age (weeks) 0.74 42 [4] 42 [3] 

Categorical 

Caudal block (yes %) 0.19 44 67 

Rocuronium (yes %) 0.30 44 53 

Drug dosage 

Atropine (intraoperative) 
(μg/kg) 

0.01 13.7 [7.6] 24.4 [15.6] 

Propofol (mg/kg) 0.04 3.2 [2.8] 4.3 [2.0] 

IOMEb (mg/kg) 0.07 0 [0.1] 0.1 [0.2] 

Acetaminophen rectal 
(mg/kg) 

0.13 14.2 [13.4] 20.0 [8.0] 

Atropine (reversal) (μg/kg) 0.63 0 [18.9] 17.4 [21.3] 

a. Median [interquartile range] or percentage for each group. 

b. IOME = Intraoperative Morphine Equivalent. 
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D. Classification Performance 

The cLDA classifier had the best overall testing 
performance (d = 0.51). Fig. 2 shows its training and testing 
PD and PFA values, and compares them to those expected by 
chance. It is clear that the cLDA classification had both 
higher detection (i.e., identified more infants with POA), and 
a lower false alarm ratio (i.e., fewer infants without POA 
were classified as APNEA). 

VI. DISCUSSION 

This paper presents an objective, standardized approach 
to identify POA in infants recovering from surgery. 
Respiratory pauses were identified with AUREA, a 
comprehensive, automated system for the classification of 
respiratory behavior. We are very confident in AUREA's 
classification of pauses, since it agrees very well (Fleiss’ 
kappa [18] > 0.8) with the “gold standard” manual analysis 
[19]. Furthermore AUREA has perfect repeatability, unlike 
manual scoring where both intra- and inter-scorer agreement 
are low [6]. We found that the pause duration threshold that 
distinguished between APNEA and NO-APNEA was 14.6 s, 
which is consistent with the 15 s pause duration defining 
POA [3]. Clinical classification had poor agreement with the 
automated, evidence-based classification; likely due to the 
subjective nature of annotation of apneic episodes based on 
bedside monitors [20] contrasted to the detailed, sample-by-
sample, automated evaluation provided by AUREA.  These 
results suggest that a comprehensive, standardized analysis of 
the respiratory behavior improves POA diagnosis. 

We then evaluated the predictive ability of demographic 
and clinical variables. Four of them reached statistical 
significance. Thus, the intraoperative doses of atropine, 
propofol and opioids were higher for the APNEA group, and 

the weight was lower. Feature selection indicated that the 
intraoperative dose of atropine together with the propofol 
dose squared were most important for classification. 

We trained DA classifiers to predict each infant’s POA 
occurrence, and found that the cLDA had the best overall 
performance (d = 0.51), with a PD = 0.73 and a relatively low 
PFA = 0.22. These results are promising because they provide 
a standardized and accurate procedure to stratify infants at 
risk of POA that is independent of clinical judgment. 
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Fig. 2.  (a) Probability of detection (PD), and (b) probability of false alarm
(PFA) of the classic Linear Discriminant Analysis classifier when predicting
infant POA occurrence. The red dotted lines show the performance
expected by chance (e.g., a coin toss). The training results show the median
and interquartile range for the training sets during cross-validation. 

TABLE II.  SELECTED FEATURES 

Feature Set 
Proportion of cross-
validation iterations 

Atropine (intraoperative), propofol squared. 62.5 % 

Atropine (intraoperative). 37.5 % 
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