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Abstract—A computationally efficient model-based design of
experiments (MBDOE) strategy is developed to plan an optimal
experiment by specifying the experimental stimulation magni-
tudes and measurement points. The strategy is extended from
previous work which optimized the experimental design over a
space of measurable species and time points. We include system
inputs (stimulation conditions) in the experiment design search to
investigate if the addition of perturbations enhances the ability of
the MBDOE method to resolve uncertainties in system dynamics.
The MBDOE problem is made computationally tractable by using
a sparse-grid approximation of the model output dynamics, pre-
specifying the time points at which the input or experimental
perturbations can be applied, and creating scenario trees to
explore the endogenous uncertainty. Consecutive scenario trees
are used to determine the best input magnitudes and select the
optimal associated measurement species and time points. We
demonstrate the effectiveness of this strategy on a T-Cell Receptor
(TCR) signaling pathway model.

I. INTRODUCTION

Model-based design of experiments (MBDOE) techniques

pose optimization problems to determine the experimental

design that will collect maximally informative data. Major

approaches towards MBDOE are concentrated towards 1)

reducing parameter uncertainty [1], [2], [3], 2) discriminating

between mathematical models [2], [4], [5], and 3) resolv-

ing dynamical uncertainty [6], [7]. Adoption of MBDOE

integrates predictions made by a mathematical model within

the experimental design process to avoid doing experiments

that are potentially costly, time consuming and insufficiently

informative. The MBDOE strategy is particularly informative

for uncertain biological systems that can exhibit a broad range

of dynamical responses.

A majority of the current MBDOE methods rely on local

optimal designs that choose an experiment which maximizes

an objective related to the Fisher Information Matrix (FIM)

[8]. The local FIM-based methods are usually limited by the

need for an initial estimate of the parameters and risk being

stuck in local minima. Since biological system models are

often nonlinear models and may possess many uncertain model

parameters, the FIM-based approaches are not fully robust.

Some global approaches have been proposed to overcome the
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challenges of FIM-based strategies. Most use Monte Carlo

simulation to estimate confidence intervals to select maximally

informative experiments [9], [10]. However, these methods

are very computationally expensive, resulting in a need for

a computationally tractable algorithm.

Computationally efficient global MBDOE methods focusing

on reducing uncertainties in the model output dynamics to

gain information about the system were proposed in [6],

[7]. Their approaches reduced the computational burden of

most global strategies by utilizing sparse-grid interpolation to

approximate the model dynamics over the parameter space.

They identified regions of the uncertain parameter space that

resulted in similar (indistinguishable) model output dynam-

ics, instead of identifying the true values of the parameters.

Although quite efficient, these two MBDOE strategies focus

on finding the best measurement points to resolve the model

output dynamics, without considering possible stimulation

(experimental inputs). Herein, we extend the global MBDOE

approach presented in [6], [7] to a more holistic specification

of experiments by introducing a method to determine the

best experimental stimulation or perturbation levels in addition

to the measurement points. The main contribution of this

work is a computationally efficient method for performing

de novo experiment design that differs from most existing

work which tends to either select optimal experimental per-

turbations or measurements but not both. Previous MBDOE

strategies would select the best experimental stimulations or

perturbations from a predefined discrete subset of experimental

factor choices. This may result in sub-optimal experiment

designs [11]. Our approach performs de novo experiment

design to determine the optimal stimulation magnitudes and

measurements within a continuous feasible space rather than

selecting them from predefined experiments.

II. METHODS

Our strategy considers a mathematical representation of the

biological system in the form of non-linear ODEs,

ẋ = f(x, u, θ, t), x(t0) = x0,

xM = CMx, xT = CTx, (1)

where x ∈ X ⊂ R
n are the states, θ ∈ Ω ⊂ R

p are the

model parameters, and u ∈ U ⊂ R
nu are the experimental

inputs. In this work, the experimental input represents the

experimental stimulation or perturbation which excites the

biological system. The uncertainty in the model dynamics for
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this deterministic model results from the uncertainty in the

parameter values. A major challenge to modeling biological

systems is that not all states are measurable but many of

them are of interest in understanding the system behavior. We

denote xM ∈ R
nM as the experimentally measurable states,

and xT ∈ R
nT denotes a subset of the internal states of the

system which are targeted for dynamical resolution. Measuring

xM helps bound the estimated dynamics on the unmeasured

states.

Our MBDOE strategy minimizes the uncertainty in the

targeted model state dynamics, xT by specifying the exper-

iment design in terms of an optimal input u that perturbs the

biological system and determines the associated maximally in-

formative measurement points, xMi
(τMi

) , where Mi indicates

which of the measurable states should be measured at discrete

time-points τMi
.

Given an initial set of data, the first step of our MBDOE

algorithm is to determine the dynamical behavior of the target

states that are consistent with the available data. To do this,

the uncertain parameter space is screened using sparse grids

as in [6] to identify data consistent parameters. Herein, a

parameter set is considered data consistent if it generates

model output dynamics that fit the available data to within

a standard deviation of each available data point,

ΩA = {θ : x̂M (t)− σ(t) ≤ xM (θ, t) ≤ x̂M (t) + σ(t)}, (2)

where xM (θ, t) denotes the measured state values simulated by

the model with parameter set θ at time t. x̂M (t) and σ(t) are

the mean and standard deviation of the available experimental

data, respectively. Note that ΩA ⊆ Ω.

Since the available data for some biological systems tend to

be sparse and noisy, there may be a large number of accept-

able parameters. To reduce the computational burden of our

MBDOE approach, a representative subset of the acceptable

parameters is selected to cover all the experimentally distin-

guishable dynamics of the target states. Acceptable parameters

are first clustered using a mean-distance clustering method so

that parameters that give similar target state dynamics will be

grouped together. This is similar to the approach used in [6],

but here we restrict the dynamical clusters to the target state

dynamics, and we sample equally from each of the dynamical

clusters. These parameters form the representative parameter

set, denoted by ΩR. Note that ΩR ⊆ ΩA.

The aim of the MBDOE strategy is to minimize the vari-

ability of the target state dynamics generated by the set of

representative parameters. We use consecutive scenario trees

(described below) to approximate a solution to the two-step

objective optimization problem:

u∗ = argmin
u∈U

ξ (xT (u, θ, t)) , (3)

(M∗
i , τ

∗
Mi

) = arg max
{Mi,τMi

}
ξ (xM (u∗, θ, t)) (4)

for θ ∈ ΩR. We denote the triple D∗ , (u∗,M∗
i , τ

∗
Mi

) as the

optimal design. Herein, we define a distinguishability metric

(DM), denoted by ξ(x(u, θ, t)), to quantify the resolvable

variability in the measured and target state dynamics generated

by the representative parameters,

ξ (x(u, θ, t)) = max
θ∈ΩR

√

var (x(u, θ, t))

E (σx(t))
,

where,

var (x(u, θ, t)) =

d
∑

j=1

p(θj) (x(u, θj , t)− µx(t))
2

for θj ∈ ΩR ⊂ R
d×p is the weighted predicted dynamical

variance of the state dynamics and,

E(
(

σ2

x(t)
)

=

{

ζb + ζs|xi(u, θ, t)|+ ζt|ẋi(t)|, xi(t) ∈ xM

1, xi(t) ∈ xT ,

is the expected experimental variance for the measured states

and unity for the target states. Here xi is the ith component

of the state x(t). For the predicted dynamical variance, the

µx(t) is the mean of the states at time t over all parameters in

the representative parameter set and p(θj) are probabilities of

the state dynamics according to how they fit the available data

assuming a Gaussian noise distribution. For the experimental

variance estimate, the ζb is the constant background variance,

ζs is the linear contribution to the variance, and ζt is the

variance contribution due to imprecise experimental time-

sampling and resolution of the sparse grid approximation tool.

The optimal measurement points are chosen as the points with

the largest predicted DM in the measured states under the

optimal input magnitudes that minimize the predicted DM of

the target state dynamics.

For computational efficiency, this MBDOE optimization

problem is solved using sparse-grid approximations of the

target and measurable state dynamics over the uncertain

parameter and input design space. This approach was used

previously in [6], [7] over the uncertain parameter space and

has been extended in this work to also consider the input

design space.

To approximate the solution for the optimization problems,

we use consecutive scenario trees to explore the endogenous

uncertainty that arises from the unknown parameter space in a

computationally efficient manner. We adapt the scenario tree

process for parallel MBDOE from [7] to allow the input to be

applied at different time points for each level of the tree. The

number and time points for input administration are specified

a priori while the magnitude of the inputs is determined by

the MBDOE optimization problem. The first scenario tree is

initialized by choosing the input from a LHS samples on

the input design space to be applied at the first time point

that minimizes the distinguishability metric of the target state

dynamics. The best measurement point for that input will be

the one with the largest distinguishability metric and give

rise to the next three branches of the tree. The branches are

constructed by predicting the measurement data to be in the

10th, 50th, and 90th percentiles of the dynamics according to

their different probability weights. For each of the consecutive

branches, the best input to be applied at the next time point is
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optimized given the previous optimal input(s) are applied. The

three branches give different optimal inputs designs due to the

different probability weights of how the associated representa-

tive parameters fit each predicted data. Repeating this process,

each node can stem up to three branches to form the next

level in the tree. At this stage of the MBDOE algorithm, the

number of levels of the scenario tree is defined by the number

of time points at which the inputs can be administered. With

pZap at  16.5  min 

DM: 4.78 

pRaf  at  3  min 

DM: 2.88 

pRaf  at  3  min 

DM: 2.62 

pRaf  at  3  min 

DM: 4.56 

pMek at  3  min 

DM: 22.43 

pMek  at  3  min 

DM: 22.77 

pZap  at  11  min 

DM: 15.74 

pZap  at  3  min 

DM: 17.26 

A. Optimal Input Experimental Design 

B. No Input Experimental Design 

Fig. 1. Scenario tree designs comparing the optimized input experiment
design. A. Against the unperturbed design. B. The optimized input sequence
is 0.24 PMA and 0.16 U0126 at 0 minutes and 0.15 PMA and 0.05 U0126
at 15 minutes. The initial distinguishability metric (DM) value for the target
states before taking any measurements is 22.83. The worst case final DM
value given the optimal input experiment design is 4.56 which is better than
the worst case DM value given by the unperturbed design, 22.77. Thus, the
optimized input experiment design is more informative.

the addition of each potential measurement, the probabilities

used in the MBDOE objective formula are updated following

Bayes theorem with the likelihood of the data assumed to

follow a Gaussian noise distribution:

pn(θ) =
p(x|θ)pn−1(θ)

p̃(x)
,

p(x|θ) =
1

√

2π (E(σ2
x))

exp

(

x(u, θ, τ) − µx

E(σx)

)2

,

µx = E(x(u, θ, τ)) =

d
∑

j=1

p(θj)x(u, θj , τ).

The posterior parameter weight, pn(θ) under the observation

is given by the prior weight of the parameter pn−1(θ) and

the likelihood function p(x|θ) which is the probability of

observing the predicted measurement data x at sample time

τ for the model parameterized by θ. p̃(x) is the normalization

constant.

Each branch of the last level of the initial scenario tree

defines a potential optimal input sequence from the top node

to the bottom. A new scenario tree is created for each potential

input sequence to determine the best measurement points and

evaluate the DM value for the target states. The input design

sequence, and its associated measurement points, correspond-

ing to the minimum target state DM value is selected as the

optimal experimental design.

III. EXEMPLAR MODEL AND RESULTS

The effectiveness of our strategy is demonstrated through

a TCR intracellular pathway with a mathematical model

proposed by in [13]. The model has 32 nonlinear ordinary dif-

ferential equations (ODEs) and 53 reaction parameters. There

are 3 measurable states: pZap, pRaf and pMek, and 4 target

states; Zapb, pSHP1, pZap, and pErk. There are 2 experimental

stimuli that could be applied: phorbol myristate acetate (PMA)

and U0126. The input magnitudes are normalized between 0

and 1 and they can be administered at 0 minutes and again at

15 minutes. We allow a total of 4 measurements to be taken in

the duration of the experiment. Therefore, the initial scenario

tree has 2 levels and the second set of scenario trees will have 2

levels that specify up to 4 nodes that specify the measurement

points. Initially, ΩA contains 4097 parameters, from which

we sample 100 representative parameters (ΩR) from computed

dynamical clusters.

The final scenario tree for the experiment design is repre-

sented in Figure 1 for the optimized input experiment design

in comparison with an unperturbed experiment design. The

DM value is greatly reduced from the initial value of 22.77

to 4.78 by taking a single measurement of pZap at 16.5 min

with the optimized input applied. In comparison, taking the

first measurement on the unperturbed system does not add

much information to resolve the target dynamics as shown in

the scenario tree Figure 1B.

Additional measurements further reduce the variability of

the target states output dynamics. To compare the information

content of the two experiment designs shown in Figure 1, the

biological system is simulated in silico for the optimized input

sequence and the unperturbed cases to obtain four additional

measurements with 10% Gaussian noise. The original accept-

able parameter space ΩA is screened for acceptable parameters

that are consistent with the four new measurements for each

of the two experiments designed creating parameter subsets

ΩAOI ⊂ ΩA for the optimized input experiment and ΩAM ⊂
ΩA for the optimized measurement specification experiment

(without additional perturbation). In Figure 2, the cyan (light

blue) lines illustrate the range of the target state dynamics

in accordance with the optimized input design. In Figure 3,

the red lines indicate the reduced variability in the dynamics

of the target states obtained with just optimized measurement

specification. To illustrate the reduction in the uncertainty of

the target state dynamics for both of these experiment designs,

the initial range of the target output dynamics generated by the

uncertainty in the acceptable parameter space is also provided

in Figure 2 and 3 with the dark blue lines. A comparative

study of the dynamics resolved with and without the optimized

experimental inputs is presented in Figure 4. It is clear that

our method outperforms the previous MBDOE method, as we

observe the uncertainty in the target state dynamics are further

reduced by the introduction of this added input optimization

problem.
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Fig. 2. Illustration of the reduction of the uncertainty in the target state
dynamics for the unperturbed system after performing the optimized input
experiment in silico. The dark blue lines indicate the initial range of dynamics
simulated by all acceptable parameters, θ ∈ ΩA. The cyan (light blue) lines
show the target dynamics that are data consistent after the optimized input
experiment, simulated with θ ∈ ΩAOI .
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Fig. 3. Illustration of the reduction of the uncertainty in the target state dynam-
ics for the unperturbed system after performing the optimized measurement
specification experiment that does not alter the input in silico. The dark blue
lines indicate the initial range of dynamics simulated by all θ ∈ ΩA. The
red lines show the target dynamics that are data consistent after optimized
measurements were taken, simulated with θ ∈ ΩAM .

IV. CONCLUSIONS

In this paper, we proposed a computationally efficient and

tractable MBDOE strategy that determines the experimental

factors (both measurement points and stimulation levels) to

minimize the target dynamic uncertainties. We illustrated the

performance of the proposed method on a T-cell exemplar

model in silico and compared our method to a previous MB-

DOE strategy that only specified the measurement points. We

demonstrated the effectiveness of optimizing for experimental

inputs in improving the MBDOE method for uncertainty

resolution in the target dynamics. Our method has limitations

as some assumptions and pre-specifications are required for

tractability, which is the objective for future work.
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Fig. 4. Illustration of the enhancement achieved by optimizing experimental
stimulation magnitudes in the MBDOE algorithm. The uncertainty in the
target state dynamics is more reduced for the optimized experimental input
design (cyan lines) compared to the previous method that only specified the
measurements (red lines). The black line, denoting the actual target dynamics
simulated with the nominal parameters, is within the uncertainty ranges refined
by both MBDOE methods.
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