
  

  

Abstract—This paper describes a method for incorporating a 
diffusion field modeling oxygen usage and dispersion in a 
multi-scale model of Mycobacterium tuberculosis (Mtb) 
infection mediated granuloma formation.  We implemented 
this method over a floating-point field to model oxygen 
dynamics in host tissue during chronic phase response and 
Mtb persistence.  The method avoids the requirement of 
satisfying the Courant–Friedrichs–Lewy (CFL) condition, 
which is necessary in implementing the explicit version of the 
finite-difference method, but imposes an impractical bound 
on the time step.  Instead, diffusion is modeled by a matrix-
based, steady state approximate solution to the diffusion 
equation.  Presented in figure 1 is the evolution of the 
diffusion profiles of a containment granuloma over time.  

 

I. INTRODUCTION 

Multi-scale modeling of host-pathogen 
interactions has recently become a necessity since 
disease outcomes depend upon events occurring at 
many different biological scales. For example, in the 
extracellular environment within the body, immune 
cells and pathogens move freely, with their 
interactions determining disease outcomes. In the 
intracellular environment individual cells (both 
immune cells and invaders) enact their responses to 
extracellular events within their relative 
microenvironment. To a large extent the 
intracellular response is determined by metabolic 
p a t h w a y s  and protein interactions initiated at the 
genomic scale through gene regulatory networks.  
To truly portray the dynamics of disease in silico, so 
as to gain insight into disease dynamics not easily 
identified by either in vitro or in vivo studies, it is 
necessary to investigate and model dynamics 
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occurring at many scales of the biological system.  
Accordingly, we developed a multi-scale model of 
Mycobacterium tuberculosis infection granuloma 
formation with an agent-based model (ABM) to 
portray the extracellular environment coupled with 
an intracellular model for bacteria using a systems 
biological approach.  This paper describes a method 
for simulating an oxygen field to allow measurement 
of the degree of hypoxia present in a given 
granuloma, using a steady-state solution that avoids 
the bound set on the time step by a fast diffusion 
coefficient.   

II. AGENT-BASED MODEL (ABM) 

     To model the extracellular environment and the 
interactions occurring therein as an element in the 
multi-scale model (intracellular dynamics are modeled 
separately from the ABM), we developed proprietary 
software for i m p l e m e n t i n g  an agent-based model.  
Our software p l a t f o r m  uses a  Python based 
framework to encode rules flexibly, and C++ kernels 
and Octave libraries for solving partial differential 
equations quickly. We developed our core ABM in the manner 
of [1] and [2], then extended this framework to accommodate 
oxygen supply and consumption in the ABM.  To define our 
A B M , we specify a regular grid of agents:  bacteria 
(represented as a floating-point field), macrophages 
and T cells (represented as particle-objects), and set 
the size of each grid cell large enough to 
accommodate the largest cell type (the macrophage at 
20 µm in diameter [1]).  For a 2mm by 2mm tissue 
sample this gives a grid size of 100 X 100 cells.  The 
simulations discussed here are 2-dimensional; the 
simulator also runs 3-dimensional models that are 
computationally more expensive.  
 

Each agent is characterized by its state (e.g. resting or 
infected). For each cell under consideration, a 
neighborhood is defined relative to the specified cell 
(e.g. Moore neighborhood). We specify the initial 
system by assigning a state for each agent resident on 
the grid. We advance time by one time step according 
to the specified rules of diffusive movement (a 
qualitative change or mathematical function) and 
determine the new state of each agent in terms of the 
current state of the agent, composition of the agent’s 
grid cell, and the states of the agents and composition 
of grid cells in its neighborhood. Rules may be 
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probabilistic or deterministic (e.g. a macrophage 
becomes activated with probability p when a gamma 
delta T cell is in its neighborhood). 
 

Variables that represent continuous concentrations (such as 
chemotactic species) are modeled as a floating-point field 
on the grid.  Chemotactic equations model the increase, 
degradation and spread of chemotactic species. Our ABMs 
profile the behavior of cells in the lung during irritation and 
infection, taking into account chemokine and cytokine 
levels and the amount of tumor necrosis factor alpha (TNF-
α) released.  These are all essential participants in 
capturing the emergent behavior of lung tissue cells during 
lung disruption or irritation. 

III. MATERIALS AND METHODS 

To capture oxygen dynamics we added an extra 
f loating-point field that accounts for extracellular 
oxygen concentration to the  ABM model. The 
biophysical parameters of oxygen uptake and 
absorption in the human lung were modeled by 
calculating the oxygen consumption (in molecules) in 
the various cell types over the 2mm X 2mm grid. The 
number of oxygen molecules available in each grid 
cell was calculated by performing mass and atomic 
balances and using the ideal gas law: 
 

                              P V = nRT        (1) 

In the model this is done by considering: 

•    oxygen in and through the lung parenchyma 
from three sources: residual volume in the 
alveoli, inhaled air, and pulmonary blood 
volume. Model parameters correspond t o  a  
normal, non-exercising male, and respiratory 
ailments can be simulated by changing the 
core oxygen parameters, such as a slower 
oxygen diffusion coefficient and/or by 
adjusting the number of breaths per minute. 
  

•    Consumption of oxygen is by macrophages 
and bacteria. O xygen consumption by the 
bacteria is based on data from E. coli [3]. 
I nfected macrophages consume more oxygen 
than resting macrophages [4]. 

 
Diffusion of chemokine, cytokine, TNF-α, and 

oxygen, is formulated and solved as a two-
dimensional, second order, parabolic diffusion (heat) 
equation: 

                    ut = D (uxx + uyy) + S                        (2)  

where ut is the first order time partial derivative, uxx 
and uyy are the second order spatial partial derivatives 
with respect to x and y respectively (for the two-
dimensional problem), S is the sink term on the grid 
(to accommodate consumers of oxygen), D is the 

diffusion coefficient for the substance diffusing, with 
Dirichlet boundary conditions and initial condition 
u(x, y, 0) = b.  Oxygen is delivered from the boundary 
cells throughout the tissue.  For the oxygen field, u(x, 
y, t) is the concentration of oxygen at the grid point 
(x, y) at time t.  

Vascular source cells allow new macrophages and 
T cells to be introduced to the grid.  In this version of 
our ABM, the oxygen consumption of the T cells is 
assumed to be negligible, since they are about half the 
size of the larger macrophage.  The resulting ABM 
has many input parameters, for example the  speed of 
various cells, probabilities, and qualitative and 
quantitative cell characterizations.  

Oxygen diffuses into the current grid cell from its 
neighboring cells or out of the current grid cell to the 
neighboring cells.  It can be shown via integration [5] 
that equation (2) is equivalent to solving the discrete 
system: 

 u(t+1) = u (1- λ) + λ (uN + uS + uE + uW) / 4 +  S   (3)   

where u is u(t), uN + uS + uE + uW are the contributions 
from the adjacent grid cells at time t and S is the 
source/sink term.  λ = 4*D*Δt / (Δx)2 (Courant–
Friedrichs–Lewy (CFL) condition with Δx = Δy [6, 7]) 
in the finite difference discretization and measures the 
proportion of oxygen diffusing into the cell at time t 
[2].  For the solution to be stable, it must be the case 
that 0 <= λ < 1.  Thus the tradeoff between step size 
and grid size is linked to the diffusion constant in 
guaranteeing the stability of the explicit finite 
difference discretization method [5]. With the 
grid sizes employed in the ABM model, the 
required time step for oxygen diffusion (D ≈ 
3.08e–5 cm2/sec [8]) would be at most 0.032 
seconds.  This renders the model computationally 
impractical since granuloma formation and 
dissemination requires simulations for 200-500 days 
of real time.  By comparison, for models without 
oxygen, the chemokine diffusion rate is the 
limiting factor (1.67e-08 cm2/sec <= D <= 1.167e-07 
cm2/sec) that gives a time step of 6 seconds (0.1< λ < 0.7) 
so that explicit, time-dependent finite difference methods 
can be used to update the ABM [1].  

For oxygen diffusion a steady state, matrix-based 
approach was adapted to solve equation (2).  One 
assumption is that the lung has time to relax to 
equilibrium between field calculations and this is an 
appropriate assumption since substantial changes in the 
formation of the granuloma occur over relatively 
longer period of time.  ABM solves the steady-state 
oxygen diffusion equation at intervals of 18 hours, as 
opposed to the finite-difference equations for 
chemokine, cytokine and TNF-α, which are updated 
every time step. 
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At steady state, ut =0, so it remains to discretize:  

               D (uxx + uyy) + S  =0.                             (4) 

Chemokine-biased movement motivates the dynamics 
of granuloma formation and once a macrophage joins 
the granuloma, it generally stays in that region, until 
bursting or death, due to the biased movement in 
response to chemokine secretion.  Oxygen diffusion is 
formulated and solved as the two-dimensional, matrix 
equation [9]: 
 
                                 D*Au = f                                  (5) 
 
where A is the finite-difference, two–dimensional (5-
point), block-tri-diagonal sparse Laplacian matrix, u is 
the lexicographically by y-lines ordered vector of grid 
cells for which we wish to compute the oxygen 
solution and f is the lexicographically ordered by y-
lines vector of sources/sinks (oxygen input at the 
boundary and oxygen consumption by agents) at time 
t.  Consumers of oxygen (sinks) are macrophages and 
bacteria. 
 
For the ABM 100 X 100 problem, the matrix A is 
sparse, square, block tridiagonal, symmetric positive 
definite and has full rank with non-zero (extremely 
large) determinant, which requires ~ O(n3) operations 
to invert using Gauss-Jordan elimination and is 
subject to computer round-off error in the computing 
the inverse of A.  Instead, equation (5) is solved much 
faster, without inverting A, in Octave using backslash, 
i.e. v = [D*A] \ f [10] via iterative conjugate gradient 
methods [11].  This solution approach was appropriate in 
considering the diffusion of oxygen in the ABM.  It 
permits computation of the approximate solution to the 
diffusion equation, since the error in A is order (Δx)2 
based on the Taylor series derivation of the finite 
difference approximation of A, see for example [9], 
with (Δx)2 ~ e-08 cm2 for the ABM problem.  This 
implementation did not contribute significantly to the 
total time required in the ABM simulation, since the 
field equations are solved only every 18 hours. 

IV. RESULTS 
    Figure 1 shows the results of our matrix computation 
on a containment granuloma at 25, 43 and 106 days on 
a grid size of 2mm x 2mm for the granuloma and the 
corresponding oxygen field. As the granuloma forms in 
the tightly packed region of cells at the center of the 
grid, the oxygen concentration in the granuloma region 
drops steadily in response to the consumption by 
agents. The change in oxygen concentration impacts 
the effectiveness of the immune response of the 
macrophage and negatively affects the metabolic fitness 
of Mtb.  Oxygen dynamics thus play a role in 
regulating the behavior of the macrophages and 

bacteria, regulation that is modeled via intracellular 
models, which take into account the effect of oxygen 
on gene expression. 

V. CONCLUSION 
    The ABM was developed to simulate Mtb-mediated 
granuloma formation and the oxygen field was added to 
allow measurement of the degree of hypoxia present in 
a given granuloma as well as the role of oxygen in 
regulating cellular response to varying levels of 
oxygen.  We have described a method for avoiding 
instabilities in explicit finite difference schemes used in 
ABMs, induced by fast diffusion coefficients. We have 
addressed this problem using a steady state, matrix-
based approach to derive an approximate solution for 
the oxygen field. The method can be executed quickly 
for the 100 X 100 grid of cells used in these models, 
and our tests show it is viable for larger grid sizes as 
well as three dimensions, and increased number of 
diffusing species. Our ABM is a central component in 
our multi-scale model of Mtb-induced granuloma 
formation and is linked through the oxygen field to 
other model components to characterize intracellular 
dynamics of host-Mtb interaction. 

VI. FUTURE WORK 
    In addition to the two methods implemented here in 
the ABM, time-dependent finite-difference and steady-
state matrix-based solution, we will give the user a 
choice of methods for solving a PDE over a field, that 
avoids the problems mentioned in Materials and 
Methods. We may wish to make the diffusion 
coefficient spatially dependent for certain diseases (ex.: 
infected or caseous tissues).  We are also extending 
matrix-based methods to 3D models. These require 
much larger Laplacian matrices, e.g. for a small scale 
3D problem such as that presented here, the Laplacian 
matrix size is in excess of 105 X 105 (memory resources 
of ~ 80 GB).  As part of that effort we plan to replace 
the Octave component of our software stack and 
implement solvers such as those available in Scipy or 
LAPACK via algorithms for sparse, block-tridiagonal 
matrices for increased speed of computation, which 
take advantage of the fact that A is sparse and require 
~ O(n) operations [12].  We are pursuing options for 
high performance cluster and supercomputing resources 
to overcome the large memory requirement for solving 
matrix-based problems in 3D. 
   We will use the freely available software DAKOTA 
written at Sandia National Laboratory to perform both 
uncertainty and sensitivity analysis to identify the 
significant oxygen parameter drivers of the model 
outcomes.  DAKOTA enables Latin-hypercube 
sampling by providing a wrapper for the multi-scale 
model, which it sees as a black box:  a sink for inputs 
(parameters) and a source for outputs (responses, i.e. 
model outcomes such as clearance, containment and 
dissemination).  Among other model evaluation 
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measures, DAKOTA returns matrices of partial rank 
correlation coefficients that can be used to identify the 
significant drivers of the model under consideration. 
    Finally, we will identify via optimization techniques, 
optimal oxygen parameters supporting, for example, a 
clearance or containment outcome (e.g. optimal number 
of breaths per minute, optimal diffusion coefficient, 
etc.) by using the significant drivers identified in the 
sensitivity phase to build an objective function that 
summarizes the multi-scale model outcomes.  
Identifying these parameters may be of substantial 
value in determining prognosis and treatment of 
infection with Mtb. 
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