
  

 

Abstract— Hospital acquired infections sicken or kill tens of 

thousands of patients every year.  These infections are difficult 

to treat due to a growing prevalence of resistance to many 

antibiotics.  Among these hospital acquired infections, bacteria 

of the genus Pseudomonas are among the most common 

opportunistic pathogens.  Computational methods for 

predicting potential novel antimicrobial therapies for hospital 

acquired Pseudomonad infections, as well as other hospital 

acquired infectious pathogens, are desperately needed.   Using 

data generated from sequenced Pseudomonad genomes and 

metabolomic and transportomic computational approaches 

developed in our laboratory, we present a support vector 

machine learning method for identifying the most predictive 

molecular mechanisms that distinguish pathogenic from non-

pathogenic Pseudomonads.  Predictions were highly accurate, 

yielding F-scores between 0.84 and 0.98 in leave one out cross 

validations.  These mechanisms are high-value targets for the 

development of new antimicrobial therapies. 

I. INTRODUCTION 

Hospital Acquired Infections, or HAIs, cause or 
contribute to approximately 100,000 deaths a year in the 
United States [1].  These infections are particularly 
dangerous as their hospital environments predispose these 
pathogenic populations to acquire multiple antibiotic 
resistances [2].  To combat this rising threat of antibiotic-
resistant HAIs, we developed computational techniques for 
identifying molecular targets for new antimicrobial therapies 
[3].  This approach is supported by enhanced capabilities to 
completely sequence the genomes of previously 
uncharacterized bacterial from clinical, as well as 
environmental, isolates provides an opportunity to 
investigate the molecular mechanisms of pathogenicity in 
HAIs 

Pseudomonads, a genus in the class of gram negative 
Gammaproteobacteria, are nearly ubiquitous in soil and 
aquatic environments, and some Pseudomonads are 
opportunistic human pathogens [4].    For example, P. 
aeruginosa is the second most common cause of hospital 
acquired pneumonia and the most common cause of 
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pneumonia in intensive care units [5, 6].  Pseudomonads 
have a broad capacity to synthesize a variety of secondary 
metabolites [7] and pathogenicity in these organisms is 
multi-factorial and combinatorial [8].  At the time of this 
study’s inception, there were 44 completely sequenced and 
annotated Pseudomonads in the NCBI databases, although 
that number continued to grow.  The pathogenicity of some 
Pseudomonads coupled with their metabolic versatility, 
adaptations to diverse environments, and the number of 
available fully sequenced and annotated genomes, make this 
genus an excellent subject for developing computational 
methods to identify the molecular mechanisms that 
distinguish pathogenic from non-pathogenic Pseudomonads. 

Here, we present a supervised machine learning approach 
to identify specific molecular signatures that underlie 
pathogenicity-related phenotypes using inputs from genomic, 
metabolomic, and transportomic predictions.    We generated 
metabolomic and transcriptomic predictions for 
Pseudomonads through application of computational biology 
approaches previously developed in our lab.  For this study, 
metabolomic models identify all possible metabolites which 
are capable of interacting with proteins for all unique 
enzyme functions identified in the set of Pseudomonad 
genomes. Transportomic models integrated with metabolic 
pathways and functional assignments can be used to identify 
the complete set of ligands for which there are 
transmembrane transporters capable of mediating ligand 
exchange across the cell membrane.  Using Support Vector 
Machines (SVMs), we identified the key metabolomic and 
transportomic signatures and molecular mechanisms most 
predictive for pathogenicity.  Results indicate that SVMs can 
predict a Pseudomonad’s pathogenicity from computational 
models with both high accuracy and high precision (Leave-
one-out F-scores averaged 0.84 and the best F-score 
observed was 0.98).  Transportomic models were found to be 
most predictive of pathogenicity, indicating that the key 
adaptation for pathogenicity is in a Pseudomonad’s ability to 
detect and manipulate its environment. 

Combining SVM predictions and the comparative 
metabolomic and transportomic models generates a system 
scale understanding of how specific molecular mechanisms 
relate to pathogenic phenotype and infers possible molecular 
pathways that may be vulnerable to targeted therapeutic 
agents.  Our results indicate that combining genomic 
sequence data, comparative metabolomic and transportomic 
models, and SVM provide potentially powerful tools for 
combating HAI-related illness and death. 
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II. MATERIALS AND METHODS 

A. Characterized Pseudomonad Genomic Sequences 

There were 44 fully sequenced Pseudomonas strains, 
annotated in The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [9, 10] and available from NCBI 
(ftp://ftp.ncbi.nih.gov/genomes/) at the time the calculations 
in this manuscript were performed. All subsequent analysis 
used the gene models and predicted coded proteins (.faa files 
in NCBI genomic sequence database).  Pathogenicity is 
described as a function of Pseudomonad species [4]. P. 
aeruginoa, P. mendocina, P. putida, and P. syringae are 
annotated as pathogens, representing 33% of sequenced 
Pseudomonad species (4 out of 12 species with at least one 
example of a sequenced genome) and 61% of total available 
sequenced genomes (27 out of the 44 genomes). 

B. Re-annotation of Pseudomonad Predicted Proteins 

As the genomes in the current study have been sequenced 
over a span of 14 years, all Pseudomonas genomes were re-
annotated using a specific set of well characterized protein 
sequences. This approach insured that all functional 
assignments for predicted proteins from genomic sequence 
data were derived using uniform conditions and consistent 
functional nomenclature.  KEGG was used as a source of 
annotated protein sequences of metabolic enzymes and 
transmembrane transporter activities that use a common 
nomenclature for metabolites and ligands.  KEGG 
annotations are compatible with metabolomic and 
transportomic modeling approaches described below.  For 
enzyme functions annotations, Enzyme Commission (EC) 
annotation numbers [11] were used.  A database of bacterial 
enzymes annotated with EC numbers and associated with 
specific reactions in KEGG metabolic pathways 
(downloaded May 16, 2011) was collected.  This set contains 
754,066 protein sequences, annotated with 2,605 unique EC 
number enzyme function annotations.  For transmembrane 
transporter function KEGG Orthology (KO) annotations 
were used.  The specific annotations considered were 
annotated as membrane transport (Ko02000), ABC 
transporters (Ko02010), Major Facilitator Superfamily 
(MFS), Phosphotransferase System (PTS) (Ko02060), and 
‘Other’ (pores/ion channels, electrochemical driven 
transporters, transmembrane electron carriers, and ‘other’).  
The set of transmembrane transporters is comprised of 
164,321 protein sequences, annotated with 891 unique 
transporter/sensor functions, and are associated with the 
transport of 272 unique ligands.  It is possible for a single 
protein sequence to be present in both the set of enzymes and 
the set of transmembrane transporters.  Protein annotations 
were assigned to single best BLAST-P hit with e-values < 
1x10

-10
 (NCBI-Blast 2.2.23+).  Enzyme function profiles for 

Pseudomonads were generated as lists of all possible enzyme 
or transmembrane transporter annotations and the number of 
genes in each Pseudomonad for that function. 

C. Predicted Relative Metabolite Turnover (PRMT) 

Predicted Relative Metabolic Turnover (PRMT) uses 
enzyme function profiles for quantifying the relative 
metabolic turnover between two metabolomes [12].  PRMT 

. 

 

Fig 1. Predicted Relative Transmembrane Transport (PRTT) score 

calculation summary.  (A) is a matrix of specific ligands (Ligands 1-7) 
associated with specific transporter annotations.  Each annotation can be 
associated with one or more ligands.  The matrix is constructed such that a 
‘0’ indicates that a ligand is not transported and a ‘1’ indicates that a ligand 
is transported by a transporter of a given annotation.  For example, in the 
cartoon above, ligands 4 and 7 are transported by a transporter annotated 
with function ‘A’.  (B) is an array of the difference between the number of 
times each annotation appears in genomes ‘x’ and ‘y’.  (C) is an array of 
PRTT-scores calculated by taking the product of matrix in (A) and array in 
(B). PRTT score is a quantification of the relative ability for an organism 
with genome x relative to an organism with genome y to transport ligand n. 

scores do not indicate rates of reaction or predict quantities 
or concentrations of compounds in a metabolome.  PRMT 
scores were used to identify the differential metabolic 
capacities that distinguishes pathogenic from non-pathogenic 
Pseudomonads 

Two sets of PRMT models were generated.  The first 
used the complete set of enzyme functions identified in the 
set of the 44 Pseudomonad genomes.  The second set was 
restricted to the subset of enzyme activities that is also 
present in KEGG Biosynthesis of Secondary Metabolites 
pathway (KEGG map01110).  Both sets were calculated 
using the average enzyme function count across all 
Pseudomonads.  In this analysis, the reference genome y is 
always calculated as the average unique enzyme function 
counts of all Pseudomonad genomes. 

D. Predicted Relative Transmembrane Transport (PRTT) 

Predicted Relative Transmembrane Transport (PRTT) is 
a system scale metric that quantifies relative ability of an 
organism to transport specific metabolites across the cellular 
membrane.  PRTT-scores are calculated as a special case of 
PRMT-scores.  The application is described here for the first 
time and is summarized in Fig. 1. 

Required input for PRTT is vectors of length ko of the 
log2-transformed number of transmembrane transport 
function representation in genomes, where ko is the number 
transporter function annotations in the transportomic model.  
Also required is transporter ligand specificity matrix T of 
size l by ko, where l is the total number of ligands present in 
transporter ligand specificity matrix.     

The PRMT score vector between transportomes encoded 
by genomes x, and y is given by: 

 
(1) 
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The resulting set of values, , is a vector of PRTT-
scores of length l for the comparison of predicted relative 
transmembrane transport of each ligand in T for 
transportome encoded by genome x relative to genome y.  A 
positive PRTT score indicates an increased relative capacity 
for transmembrane transport of a specific ligand in the 
transportome in genome x relative to genome y.  A negative 
PRTT score indicates a decreased relative capacity of 
transmembrane transport of a ligand.  PRTT scores do not 
indicate absolute rates or directionality of transmembrane 
transport activity.  PRTT scores were used to identify what 
capacities to sense or manipulate the environment via 
transmembrane transport distinguish pathogenic from non-
pathogenic Pseudomonads.  As with PRMT scores, all PRTT 
scores were calculated using reference genome y calculated 
as the average transmembrane transport function counts of 
all Pseudomonad genomes.   

E. Support Vector Machine Learning 

SVMs are supervised learning methods that analyze data 
and recognize patterns.  Given a set of training examples, 
each marked as belonging to one of two categories, an SVM 
training algorithm builds a model that assigns new examples 
into one category or the other. 

Enzyme function profiles, PRMT scores, secondary 
metabolism PRMT scores, or PRTT scores used as features 
in training SVMs were non-zero in more than half of the 
genomes and had a standard deviations greater than 0.2 (i.e. 
features were present in most Pseudomonas genomes and 
there is variation in feature values). 

Accuracy of SVM models was calculated using Leave 
One Out Validation (LOOV).  In LOOV, a single genome is 
used as a validation set and the model is trained on the 
remaining data with a 10-fold cross-validation procedure and 
linear kernels.  The process is repeated until each of the 44 
Pseudomonas genomes was used as validation set once. For 
generation of SVM, R-project (http://www.r-project.org/) 
and package ‘e1071’ v1.6-1 (August 29, 2013, http://cran.r-
project.org/web/packages/e1071/index.html) were used.  To 
identify the most predictive features in SVM for each feature 
type, enzyme function count, PRMT, and PRTT were ranked 
by the weight in the corresponding trained model.  SVMs 
were retrained using 10%-90% of the highest ranked 
features. 

To quantitate the predictive power of SVMs, F-score was 
used.  F-score is a metric that combines precision 
(specificity) and recall (sensitivity) of predictions and is 
calculated as follows: 

 
(2) 

Where, 

 
(3,4) 

 

In precision and recall, tp is the number of true positives, 
fp is the number of false positives, and fn is the number of 
false negatives in predictions. 

III. RESULTS 

A.  Pseudomonad Metabolomic and Transportomic Models 
The re-annotated genomes identify 1092 unique enzyme 

activities and 195 transmembrane transport annotations that 
were present in at least one Pseudomonad.  606 of the 
enzyme functions and 169 transporter functions were present 
and showed variation in representation in over half of the re-
annotated genomes.  Metabolic and transportomic models for 
Pseudomonads were constructed using PRMT and PRTT 
based on the re-annotated Pseudomonad genomes.  The 
complete metabolomic model is comprised of 6642 
enzymatic transformation interactions of 3688 metabolites, 
of which 2143 metabolite PRMT scores were non-zero and 
showed variation in over half of pseudomonad models.  The 
secondary metabolism model is comprised of 1649 
enzymatic transformations between 1494 metabolites carried 
out by 301 unique enzyme functions.  There are 714 
secondary metabolite PRMT scores that were non-zero and 
showed variation in over half of models.  The non-zero 
feature values with standard deviations over 0.2 were 
selected for training SVMs.  There were 606 enzyme 
functions, 2143 metabolite PRMT scores, 714 secondary 
metabolite PRMT scores, and 169 ligand PRTT scores that 
fit these criteria. 

B. Prediction F-scores 

Using 100% of input features, transportomic model was 

the most predictive of Pseudomonad pathogenicity, followed 

by secondary metabolism model, metabolomic model, and 

enzyme function profiles (Fig. 2A).  This trend persisted 

across the majority of conditions for which nodes were 

restricted to high-weight SVM features, excepting a region 

for which enzyme function profile outperformed total 

metabolome (between top 30-60% of features) and a single 

point at which secondary metabolism outperformed 

transportomic model (top 10% of features)  (Fig. 2B).  

Reducing the number of features to those with highest SVM 

feature weight improved prediction of SVM for every input 

type.  There were 121 unique enzyme functions, 214 

metabolites, 71 secondary metabolites, and 40 

transmembrane transported ligands that are most predictive 

of Pseudomonad pathogenicity identified by SVM model 

analysis.  The complete list of predictive features can be 

downloaded from http://www.bio.anl.gov/molecular_and_ 

systems_biology/S1_PathogenFeatures.txt. 

IV. DISCUSSION AND CONCLUSION 

Our analysis suggests genomic features of bacteria such 
as enzyme function profile, metabolomic models, and 
transportomic model data can be used to accurately 
distinguish pathogenic from non-pathogenic Pseudomonads.   
Molecular characteristics supportive of transportomic 
models are the most informative feature for predicting 
pathogenicity in Pseudomonads and enzyme function profile 
is the least predictive.   

These results have significant biological implications for 
experimental identification of specific targets as possible 
novel therapeutic targets.  While experimental validation of  
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Figure 2. F-scores of SVM predictions.  (A) F-score for predictions using 
complete set of features for each input type.  (B) F-scores for predictions 
using only the high-weight features identified in (A) as percentages of total 
features for each input type. 

computational results is beyond the scope of this study, a 
number of transported ligands predictive for pathogenicity 
are suggestive of putative targets for therapeutic intervention 
in Pseudomonad infections.  Many examples of 
pathogenesis-specific transporter functions in Pseudomonads 
obtained from our SVM models have been previously 
identified as important to pathogenicity in similar systems.  
Colicins, for example, are released into the environment to 
reduce competition from other bacterial strains [13].  
Interfering with an infectious Pseudomonad’s ability to 
compete with native gut flora is a potential approach to 
treating Pseudomonad infections.  Homoserine is a signaling 
compound implicated in the formation of biofilms and a 
contributor to resistance to antibiotics [14].  Drugs that 
interfere with Pseudomonad’s ability to form biofilms could 
substantially reduce Pseudomonads native antibiotic 
resistances [15].  Transmembrane sugar transporters are 
identified by this method and sugar metabolism has been 
previously identified as a virulence factor in enterobacteria 
[16].  Zinc, Mg

2+
, and K

+
 cation transport abilities are highly 

predictive of Pseudomonad pathogenicity and novel 
mechanisms involving direct metal intoxication of 
microorganisms have begun to be understood as important 
components of the immune system [17].  The agreement 
between predictions and previously reported mechanisms of 
pathogenicity lends credence to the hypothesis that some of 
the predictions that are not supported by previous literature 
may be novel discoveries and valuable targets for drug 
development. 

This approach using SVM models trained on features 
from metabolomic and transportomic models can be 
generalized to any bacterial pathogen for which a body of 
sequences and annotated genomes are available.  The ability 
to generate metabolic and transportomic models directly 
from sequenced bacterial genomes is a powerful tool to 
computationally analyze new or uncharacterized pathogens 
and devise effective therapies using genomic data from 
clinical isolates.  Computational methods that can leverage 
bacterial pathogen genomic data to propose new patient 
therapies, such as the machine learning method we have 
described here, are needed to reduce the risk of illness and 
death from HAIs and to counter the rising risk of multiple-
resistant bacterial pathogens.   
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