
  

 

Abstract— MicroRNAs play an important role in regulation 

of gene expression, but still detection of their targets remains a 

challenge.  In this work we present a supervised regulatory 

network inference method with aim to identify potential target 

genes (mRNAs) of microRNAs. Briefly, the proposed method 

exploiting mRNA and microRNA expression trains Random 

Forests on known interactions and subsequently it is able to 

predict novel ones. In parallel, we incorporate different 

available data sources, such as Gene Ontology and Protein-

Protein Interactions, to deliver biologically consistent results. 

Application in both benchmark data and an experiment 

studying aging showed robust performance. 

I. INTRODUCTION 

Over the last decade, microRNAs (miRNAs) have 
emerged as important and evolutionarily conserved 
regulators of various physiopathological processes, from 
development to cancer [1]. MiRNAs are small non coding 
RNAs, typically consisted of 21-25 nucleotides, that play 
important role in gene regulation and their role is to suppress 
gene expression by binding to mRNAs preventing them from 
being translated. A single miRNA can target hundreds of 
mRNAs, thus contributing significantly in gene expression 
regulation. Many algorithms have been proposed to detect 
transcripts targeted by miRNAs, usually relying on sequence 
analysis, however combining mRNA and miRNA expression 
data can reveal disease mechanisms or cellular processes[2]. 
Therefore, it is of great interest to unravel the miRNA-
mRNA regulatory network governing a disease state or 
cellular process and explore the synergic or additive effects 
when multiple miRNAs target the same mRNA. In this way, 
miRNAs associated with a specific condition could be used 
as indicators or even as candidate therapeutic targets [3]. 

In Systems Biology, network notation has been widely 
used to model gene-gene interactions. In the recent literature 
several Gene Regulatory Network (GRN) inference 
algorithms have been developed based on various 

mathematical and computational methods, 
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A main limitation of the majority of proposed GRN 
algorithms is that they rely solely on gene expression data. 
However, it has been shown that including other kinds of 
information leads to biologically more accurate results [5]. 

Support Vector Machines (

Random Forest is an ensemble method, based on 
Classification and Regression Trees and has been 
successfully used for a wide variety of classification 
problems in Systems Biology; for example to determine a set 
of genes able to predict a disease [10] or to detect Single 
Nucleotide Polymorphisms (SNPs) related with certain 
diseases [11] and predict targets of miRNAs based on their 
sequence [12]. There are few cases that RF have been used 
for regression problems, mostly in an unsupervised way, with 
the scope to evaluate the association of variables to a 
condition; for example in [13] SNPs are ranked according to 
their association with Alzheimer disease and in [14] miRNAs 
are associated with glioblastoma based on fold change values 
of gene expression. With regard to gene regulatory network 
inference, only GENIE3 used regression with RF [6].  

In the road for deciphering the miRNA-mRNA network, 
the proposed method uses regression RF with supervision, 
i.e. known miRNA-mRNA interactions in order to predict 
new potential targets. For this, we exploit microarray 
experiments measuring simultaneously under the same 
experimental settings miRNA and mRNA expression. First, a 
training phase is performed upon a priori knowledge and 
then test phase follows upon the remaining data, utilizing 
optionally heterogeneous biological data, such as Gene 
Ontology and Protein-Protein Interactions to ensure 
biologically relevant results. The proposed method was 
evaluated on benchmark datasets generated by the DREAM 
5 network inference challenge [15] and compared to 
SIRENE algorithm in terms of accuracy. Finally, application 
of our method on a microarray experiment (recording both 
mRNA and miRNA expression profiles) investigating 
cardiac tissue aging mechanisms predicted miRNA-mRNA 
interactions, recently supported as cardiac age-related. 

II. METHODS 

We developed a supervised method based on RF, which 
is able to detect potential target genes of miRNAs by 
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exploiting known miRNA-mRNA interactions. This method 
can optionally exploit different available biological data 
sources to increase outcome accuracy. Also, we present in 
detail Random Forests and two other algorithms of similar 
nature with our proposed method.  

The cornerstone of our method is RF, which is an 
ensemble method that trains a large number of Classification 
and Regression Trees and aggregates their result by majority 
voting for classification and averaging for regression. 
Briefly, each tree is constructed on a random subset of the 
data and while growing, a variable to split is selected 
randomly. Thereby it is able to deliver accurate results and it 
does not suffer from overfitting to the training data. A RF-
based GRN algorithm is Gene Network Inference with 
Ensemble of Trees (GENIE3). Considering each gene as 
target and all other genes as candidate regulators, it trains a 
Random Forest and subsequently uses the Variable 
Importance metric of the trained model to evaluate the rank 
of the potential regulators for each gene. This algorithm 
performs only training of RF based on the complete gene 
expression data without testing, hence, it operates in an 
unsupervised way. Supervised Inference of Regulatory 
Networks (SIRENE) is a supervised algorithm which 
predicts target genes of Transcription Factors (TF). In detail, 
SIRENE solves a classification problem using SVM and for 
each transcription factor it determines if genes are targets or 
not. It uses known relationships between TFs and targeted 
genes as positive examples, while in the absence of negative 
examples uses a cross-validation scheme on the unknown 
genes. In essence, to define a gene as a target, its profile 
should be similar to profile of other targets, while the 
regulator profile is not utilized.  

We achieve embedding a priori knowledge by 
performing first a training phase based on this knowledge 
and then proceeding to test phase with the rest of the data. 
Specifically, for each known miRΝΑ-gene interaction, we 
train a RF, using the gene profile as input and the miRΝΑ 
profile as output. Intuitively, we train a RF to learn the 
function "a gene is regulated by a miRΝΑ". Next, we use the 
trained model to test if other genes can be targets of the same 
miRΝΑ. For each gene, we provide as input its profile and 
then we calculate the mean square error (MSE) between the 
predicted output and the miRΝΑ profile. In case we obtain 
many error values for a candidate target, since a miRΝΑ has 

usually more than one known targets, we keep the minimum 
error as final prediction score. In order to make comparable 
the error values derived from different RFs, miRNA 
expression values are normalized with zero mean and unit 
variance. An advantage of using regression instead of 
classification in comparison to SIRENE is that we overcome 
the absence of negative examples. Moreover, when a 
miRNA-mRNA interaction is given, the described scheme 
can take advantage of both miRNA and mRNA expression 
profiles.  

Additionally, in order to reduce search space and at the 
same time deliver more biologically consistent results, we 
can exploit additional data sources, such as Gene Ontology 
(GO) biological process terms and Protein-Protein 
Interactions (PPIs). After training a model on a known 
miRNA-mRNA relationship, we restrict testing to genes 
belonging to the same GO biological processes as the gene 
under investigation. Moreover, PPI can be used 
complementary, so as to include in test set only genes that 
are in close proximity in the network topology. In our 
experiments, we limited our analysis up to second order 
neighbors. 

Pseudocode of our method 

Input: gene expression matrix g, miRNA expression matrix 
m, list of known interactions L, optional biological data B 

Output: scores 

Initialize scores = +∞ 

for each interaction in L between i-th miRNA and j-th gene  

RFij = train_RandomForest(gj, mi)  

if B ==  ∅ , test_setj = get_all_genes() 

if B == GO, test_setj = get_genes_from_same_GO(B, gj) 

if B == PPI, test_setj = get_neighbors(B, gj) 

for each gene gk in test_setj 

predictionik = test_ RandomForest (RFij, gk) 

error = MeanSquareError(mi, predictionik) 

scoresik = min(error, scoresik) 

 
Figure 1.  Performance of (A) SIRENE and (B) our method on the four DREAM 5 datasets for various suprvision percentages. 
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III. RESULTS AND DISCUSSION 

A. Data 

To test the efficiency of our method, we used the 
benchmark datasets provided by DREAM 5 network 
inference challenge [15]. The DREAM project organizes 
annual challenges for Systems Biology problems, such as 
network inference, providing gene expression datasets along 
with the real network topology derived from validated 
biological data. We used the 4 datasets with averaged 
experimental conditions, containing 1,643 genes - 487 
samples (in silico), 2,677 genes - 53 samples (S. aureus), 
4,511 genes - 487 samples (E. coli) and 5,950 genes - 321 
samples (S. cerevisiae), which hereafter will be referred as 
D51, D52, D53 and D54 respectively.  

Next, we applied our method in a microarray dataset 
studying cardiac aging accessible with GSE43556 series 
number in NCBI's Gene Expression Omnibus 
(http://www.ncbi.nlm.nih.gov/geo/) [16]. In this dataset the 
expression of 22,406 genes and 566 microRNAs was 
measured across 8 mice of different age. Data were log 
transformed and Z-transformed. We tested the hypothesis 
that the expression of a given gene is associated with age. 
For each gene we performed linear regression, using:  

    
0 1ij j j i ij

Y Age  

where Yij is the signal intensity of gene j in sample i, Agei is 
the age of the specimen from which sample i was obtained, 
and ɛij is an error term. Coefficients β0 and β1 were estimated 
by least squares. A two-tailed F-test was performed on the 
differential expression to estimate statistical significance of 
the slope of the curve, which would indicate an association 
between expression and age. Considering profiles with 
|slope| > 0.005 and P-value < 0.05 as putatively age 
dependent resulted in a set of 155 miRNAs and 2,995 genes. 

In parallel, we extracted the GO biological process terms 
related to each gene from the corresponding platform file 
GPL1261. PPIs were collected from iRefIndex 
(http://irefindex.org/) and MiMI (http://mimi.ncibi.org/) 
databases, resulting in 28,037 interactions among 4,399 
proteins. The set of miRNA-mRNA interactions was 
compiled from Tarbase (http://www.microrna.gr/tarbase) 
(experimentally verified interactions) and miRecords 
(http://mirecords.biolead.org/) (predicted interactions), 
including in total 73,932 relations among 410 microRNAs 
and 10,151 genes. With respect to miRecords, we included 
only relations supported by at least four miRNA target 
prediction tools. 

TABLE I.   PERFORMANCE ON DREAM 5 DATASETS 

Algorithm 
Dataset 

D51 D52 D53 D54 

GENIE3 0.815 0.622 0.617 0.518 

Pearson Correlation 0.609 0.631 0.580 0.517 

Anova-based 0.780 0.608 0.671 0.519 

Meta-predictor 0.695 0.538 0.602 0.540 

Our Method (10%) 0.842 0.852 0.830 0.724 

Our Method (50%) 0.921 0.919 0.916 0.844 

In bold the maximum performance of the unsupervised methods per dataset 

in DREAM 5 contest is highlighted. 

B. Results 

In our experiments, to construct the training set for each 
regulator, we kept randomly a percentage (10%-50%) of the 
known interactions, so remaining interactions would be used 
for evaluation. Reported results are mean values over 100 
repetitions. In all cases, the number of trees in RF was set to 
100. To evaluate the accuracy of the inferred networks, Area 
Under Curve (AUC) was used, which is computed as the 
area under the curve of the True Positive Rate versus the 
False Positive Rate at various values of threshold, which 
overcomes the need to search for an optimal threshold.  

In Table 1, the top performing methods in DREAM 5 
contest are shown [15]. It is important to note that with the 
exception of D51 dataset, which is artificial and is the 
smallest of the four, AUC scores were very low and in the 
case of D54, marginally better than random prediction 
(0.50). This indicates that based only on gene expression, 
detecting most of the real interactions is very hard task for 
any method.  

Initially, we applied SIRENE (Fig. 1A) and our method 
(Fig. 1B) on DREAM datasets, providing as input various 
percentages of the real interactions. Our method showed 
superior performance against all unsupervised methods and 
SIRENE in all cases. Additionally, it is evident that it 
provided robust results and outperformed the unsupervised 
methods even when a small fraction of real relationships was 
available. Also, for SIRENE, a very large percentage (50%) 
of the known relationships was required as input to provide 
acceptable performance, similar to unsupervised methods. 

Next, we applied our method in the cardiac aging dataset, 
with the scope to detect the age-related miRNA-mRNA 
interactions (Fig. 2). We observed that our method was able 
to provide robust results, with AUC significantly over 0.5, 
which was increased proportionally with supervision. 
Moving forward, we utilized GO and PPI data during the test 
phase. Despite testing was restricted to about 1/3 of all 
possible targets, results remained stable or improved. This is 
explained by the notion that genes regulated by the same 
miRNA are functionally associated and using this a priori 
knowledge we discarded successfully unrelated genes. 
Finally, in order to detect potential novel interactions, we 
used as input to our method the highly confident miRNA-
mRNA relations. In Table 2, example miRNA-mRNA 
predicted relations are provided, all of which were not listed 

 
Figure 2.  Performance of our method on the aging dataset was 

improved when additional biological data sources were included. 
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in our initial interaction pool but are supported by at least 
one target prediction tool (Diana - http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=microtv4, Miranda - 
www.mirbase.org, Targetscan - www.targetscan.org). In 
many cases, the reported KEGG pathways are associated 
with cardiac aging or cardiovascular diseases according to 
literature-based evidence. 

IV. CONCLUSION 

Our proposed a method showed solid performance in 
benchmark datasets and was proven able to take advantage 
of previous biological knowledge to deliver accurate 
predictions. In future work, additional features can be used 
for detecting association between microRNAs and genes, 
such as sequence similarity. Currently there are relatively 
few experiments measuring both mRNA and miRNA 
expression, but we expect their number to rise in the future, 
which will increase the demand for such methods. 

TABLE II.  AGING RELATED PREDICTED TARGETS 

MicroRNA Gene KEGG Pathways 

mmu-let-7a 

Fam126b - 

Gnb1 
mmu04014-Ras signaling 

pathway [17] 

mmu-mir-106a 

Atp1b2 

mmu04261-Adrenergic 

signaling in cardiomyocytes 

[19] 

Prkar2a mmu04210-Apoptosis [18] 

Rnf207 - 

Tdrkh - 

mmu-mir-298 

Cul3 
mmu04120-Ubiquitin mediated 

proteolysis [20] 

Glyr1 - 

Grn16515 - 

mmu-mir-351 

Cep 
mmu04020-Calcium signaling 

pathway [21] 

Cgn mmu04530-Tight junction 

A830080D01Rik - 

mmu-mir-494 

Wwc2 - 

Dhx35 - 

Acsl4 
mmu03320-PPAR signaling 

pathway [22] 

1810013224Rik - 

mmu-mir-503 

Ak4 
mmu04014-Ras signaling 

pathway [17] 

Cnot6l mmu03018-RNA degradation 

Etnk1 
mmu01100-Metabolic 

pathways 

Bcl11a - 

Stat5b 
mmu04630-Jak-STAT 

signaling pathway [23] 

Hif1a 
mmu04150-mTOR signaling 

pathway [24] 

Srsf1 mmu03040-Spliceosome 

Indicative examples of age-related miRNAs and their predicted targets. The 

reported references provide evidence that the respective miRNA-mRNA 

pairs are associated with cardiac aging or cardiovascular diseases. No 

KEGG Pathway annotation was available for genes marked with '-'. 

REFERENCES 

[1] M. H. Schulz, K. V. Pandit, C. L. Lino Cardenas, N. Ambalavanan, 

N. Kaminski, and Z. Bar-Joseph, “Reconstructing dynamic 

microRNA-regulated interaction networks”, Proceedings of the 

National Academy of Sciences, 110:39, pp. 15686-15691, 2013. 

[2] C. L. Plaisier, M. Pan, and N. S. Baliga, “A miRNA-regulatory 

network explains how dysregulated miRNAs perturb oncogenic 

processes across diverse cancers”, Genome Res., 22, 2302-14, 2012. 

[3] J. Fu, W. Tang, P. Du, G. Wang, W. Chen, J. Li, Y. Zhu, J. Gao, and 

Long Cui, “Identifying MicroRNA-mRNA regulatory network in 

colorectal cancer by a combination of expression profile and 

bioinformatics analysis”, BMC Systems Biology, 6:68, 2012. 

[4] M. Hecker, S. Lambeck, S. Toepfer, E. van Someren, and R. Guthke, 

“Gene regulatory network inference: data integration in dynamic 

models-a review”, Biosystems, 96:1, pp. 86-103, Apr 2009. 

[5] P. B. Madhamshettiwar, S. R Maetschke, M. J. Davis, A. Reverter, 

and M. A. Raga, “Gene regulatory network inference: evaluation and 

application to ovarian cancer allows the prioritization of drug targets”, 

Genome Medicine, 4:41, 2012. 

[6] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, P. Geurts, “Inferring 

Regulatory Networks from Expression Data Using Tree-Based 

Methods”, PLoS ONE, 5(9): e12776, 2010. 

[7] F. Mordelet, and J.- P. Vert, “SIRENE: supervised inference of 

regulatory networks”, Bioinformatics, 24(16):i76-i82, 2008. 

[8] I. A. Maraziotis, A. Dragomir, and D. Thanos, “Gene Regulatory 

networks modeling using a dynamic evolutionary hybrid”, BMC 

Bioinformatics, 11:140, Mar. 2010.  

[9] L. Breiman, “Random forests”, Machine Learning, 45:1, 5–32, 2001. 

[10] R. Díaz-Uriarte, S. A. De Andres, “Gene selection and classification 

of microarray data using random forest”, BMC Bioinformatics, 7:3, 

2006. 

[11] H. J. Cordell , “Detecting gene–gene interactions that underlie human 

diseases”, Nature Reviews Genetics, 10:6, pp. 392-404, 2009. 

[12] M. R. Mendoza, G. C. da Fonseca, G. Loss-Morais, R. Alves, R. 

Margis, and A. L. C. Bazzan, “RFMirTarget: Predicting Human 

MicroRNA Target Genes with a Random Forest Classifier”, PLoS 

ONE, 8(7): e70153, 2013. 

[13] Y. Wang, W. Goh, L. Wong, G. Montana and the Alzheimer's Disease 

Neuroimaging Initiative, “Random forests on Hadoop for genome-

wide association studies of multivariate neuroimaging phenotypes”, 

BMC Bioinformatics, 14(Suppl 16):S6, 2013. 

[14] S. Wuchty, D. Arjona, A. Li, Y. Kotliarov, J. Walling, et al. 

“Prediction of Associations between microRNAs and Gene 

Expression in Glioma Biology”, PLoS ONE, 6(2): e14681, 2011. 

[15] D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M. 

Camacho, and K. R. Allison, “Wisdom of crowds for robust gene 

network inference”. Nature Methods, 9:8, pp. 796-804, 2012. 

[16] A. R. Boon, K. Iekushi, S. Lechner, T. Seeger, et al., “MicroRNA-34a 

regulates cardiac ageing and function”, Nature, 495:7439, pp. 107-

10, Mar 2013. 

[17] A. T. Naito, I. Shiojima, and I. Komuro, “Wnt signaling and aging-

related heart disorders”, Circ Res, 107:11, pp. 1295-303, Nov 2010 

[18] M. Pollack, S. Phaneuf, A. Dirks, and C. Leeuwenburgh, “The role of 

apoptosis in the normal aging brain, skeletal muscle, and heart”, Ann 

N Y Acad Sci, 959, pp.93-107, Apr 2002. 

[19] L. Barki-Harrington, C. Perrino, and H. A. Rockman, “Network 

integration of the adrenergic system in cardiac hypertrophy”, 

Cardiovasc Res, 63:3, pp. 391-402, Aug 2004. 

[20] A. L. Portbury, M. S. Willis, and C. Patterson,  “Tearin' up my heart: 

proteolysis in the cardiac sarcomere”, J Biol Chem, 286:12, pp. 9929-

34, 25 Mar 2011 

[21] Q. Lou, A. Janardhan, and I. R. Efimov, “Remodeling of calcium 

handling in human heart failure”, Adv Exp Med Biol, 740, pp. 1145-

74, 2012. 

[22] B. N. Finck, “The PPAR regulatory system in cardiac physiology and 

disease”, Cardiovasc Res, 73:2, pp. 269-77, Jan 15 2007. 

[23] Y. T. Xuan, Y. Guo, H. Han, Y. Zhu, and R. Bolli, “An essential role 

of the JAK-STAT pathway in ischemic preconditioning”, Proc Nat 

Acad Sci, 98:16, pp. 9050-5, Jul 31 2001. 
[24] B. J. North, and D. A, Sinclair, “The intersection between aging and 

cardiovascular disease”, Circ Res, 110:8, pp. 1097-108, Apr 13 2012. 

321


