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Abstract— This paper presents a new method for identifica-
tion of system models that are linear in parametric structure,
but arbitrarily nonlinear in signal operations. The strategy
blends traditional system identification methods with three
modeling strategies that are not commonly employed in sig-
nal processing: linear-time-invariant-in-parameters models, set-
based parameter identification, and evolutionary selection of
the model structure. This paper reports recent advances in
the theoretical foundation of the methods, then focuses on the
operation and performance of the approach, particularly the
evolutionary model determination. The method is applied to
the modeling of microbial growth by Monod Kinetics.

I. INTRODUCTION

In parametric system identification, a critical problem is
finding a suitable structure within which a good model can
be found. In nonadaptive identification, guided by varying
degrees of physical information, the model form is ordinarily
fixed prior to estimating parameters. The term “black-box” is
used to describe a model that has been selected independently
of any physical system knowledge [1], [2]. Linear, time-
invariant (LTI) models are frequently used because of their
simplicity and the wealth of theoretical and algorithmic
support that attends these structures.

Identification of nonlinear models – particularly of the
black-box type in which no guidance in model selection is
available – remains a challenging problem. The approach
suggested in this paper employs models that are LTI in
parameters (LTIiP), but which may, in general, be extremely
nonlinear in the signal interactions. This approach signifi-
cantly generalizes the classes of models that can be employed
in signal processing applications while preserving much of
the well-developed solution structure that is available for
linear models. Moreover, unlike the work that has been done
on nonlinear models [2], the present approach ascertains
the model structure as part of the model development and
estimation, a feature that could be useful in linear model
estimation as well. Specifically, we describe an evolutionary
algorithm-based approach to the selection of the nonlinear
regressors.

As an example application of this new identification ap-
proach, we illustrate the ability of this method to identify
a system that tracks the microbial growth profile of a
culture population following the Monod equation [3]. The
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Monod equation has been used for more than 60 years to
model the growth rates of microbial populations in aqueous
environments as a function of sustaining nutrients. Using the
Monod equation as a convenient way to generate a simulated
culture trajectory, the new identification algorithm is used to
estimate the parameters of a nonlinear model ad hoc, with no
a priori observation or estimation models beyond the LTIiP
constraint.

II. IDENTIFICATION FRAMEWORK

Consider a single-input–single-output (SISO) discrete-
time system with input x ∈ RZ and output ζ ∈ RZ, each
typically assumed to belong to some well-behaved space
like ℓ2. The internal processing of the system is based on a
subset of a candidate set of nonlinear regressor functions,
Ξψ = {ψq}, of size |Ξψ |. Each regressor is a mapping
ψq : Rrq+sq → R, operating on a set of rq past and present
system inputs, and sq past outputs. The LTIiP observation
model, Oθ∗

, is given by

ζ[t] = θ1∗ψ1∗ (t, x, ζ) + · · ·+ θQ∗ψQ∗ (t, x, ζ) + e∗[t]
def
= θT

∗
ψ

∗
(t, x, ζ) + e∗[t], t ∈ Z, (1)

with θ∗ ∈ P (parameter space) ⊂ RQ , and e∗ ∈ RZ

an error sequence (properties described below) representing
uncertainties in the model. The “∗” subscript indicates a
“true,” but unknown, quantity associated with the observa-
tion model.1

Given observations of x and ζ sufficient to compute
outputs on time interval t ∈ T, we pose an estimation model,

ζp[t] = θ1ψ1 (t, x, ζ)+ · · ·+ θQψQ (t, x, ζ)
def
= θTψ (t, x, ζ)

in which each ψq is drawn from the set Ξψ (see Footnote 1)
and θ ∈ P. The superscript on ζp is meant to connote
“prediction” , as this estimation model corresponds to the
classical prediction-error method of Ljung [2] and others.
The residual sequence associated with the observation model
at discrete time t is a function of the parameters, as well as
the regressor functions chosen,

ε (t, θ,ψ) = ζ[t]− ζp (t) = ζ[t]− θTψ (t, x, ζ) . (2)

The objective is to determine the appropriate regressor
functions concomitantly with the estimation of parameters

1Because the index q in ψq has been defined as an enumeration of the
elements of the candidate set Ξψ , the functions in (1) should be indexed
as ψqi∗, i = 1, . . . , Q, but we use the slightly abusive notation ψq∗ for
simplicity. It is to be understood that ψq∗ is the qth element selected from
Ξψ , rather than the qth element of Ξψ .
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TABLE I

ADAPTATION OF SYSTEM MODELING TO A GENETIC ALGORITHM

Cell Biology System Model

Chromosome LTIiP model

Gene Regressor function

Regulator of gene Parameter

for a particular modeling application. The regressor set will
be chosen according to a genetic algorithm based on an
evolutionary view of the selection process.

The method used to identify the parameters θ plays a
critical role in the evolutionary model selection process. In
the interests of focusing on the model determination and
performance, we will only sketch the parameter estimation
procedures which are described in [4], with foundations in
archival papers [5], [6], [7], [8], [9], [10], [11].

Set-membership (SM) identification refers to a class of
algorithms that use a priori knowledge about a model to
constrain the parameter solutions to certain sets. In the
present paper we employ the the quasi-optimal bounding
ellipsoid (QOBE) algorithm described in [12], [13]. QOBE
can be regarded as a blending of the classical recursive least
squares (RLS) approach with knowledge of bounds on model
errors. However, starting with the obviation of statistical
modeling of the errors [e∗ in (1)] in QOBE, the estimation
strategy is profoundly different from that in RLS. QOBE uses
a sequence of pointwise error bounds, | e∗[t] | < γt, t ∈ T, to
constrain the feasible parameter values to an hyperellipsoidal
set, Ht, of solutions in RQ at each t. The solution set is
only updated at time t if observed data contain innovation –
defined as the ability to shrink the hypervolume of the set.
For a set of observations {x[t], ζ[t]}t∈T

, and a model with
a fixed set of regressor functions, ψ, the result of parameter
estimation via QOBE is an hyperellipsoidal set of feasible
parameter vectors that are consistent with the measurements
and the known error bounds. The center of the ellipsoid
can be used as a point estimate if desired and it has the
interpretation of a RLS estimate with weights selected by
the set shrinkage optimization. Several properties of these
sets can be used to infer evolutionary fitness of a particular
regressor function set. In this paper we use the volume of
the final hyperellipsoid, and the squared error associated with
the central estimate.

That θ and ψ are sought concurrently represents a signif-
icant departure from the conventional QOBE development.
Here this deviation is handled by automatic bound estimation
(ABE) [14], and the underbounding safeguard (UBS) [15].
We refer the algorithm as QOBE-ABE-UBS, or “QAU” .

III. EVOLUTIONARY MODEL SELECTION

A. “Cell Biology” of the LTIiP Model

The genetic algorithm aspects of this work represent
a novel adaptation of standard methods in the fields of
evolutionary algorithms (e.g., [16]). The present problem
has an unusual, but very coherent, mapping into the genetic
algorithm framework. Specifically, a chromosome in the

genetic algorithm encodes a LTIiP model as an string of bits
from a binary alphabet {0, 1}. Let Ξψ = {ψq}, contain the
regressor functions available to create models. The decoding
of a chromosome into its corresponding model is thus an
array indexing operation where the chromosome is broken
into genes with equal lengths, and each gene comprises one
member of the regressor function set, say ψq, in the model.
By analogy, a regressor function, as a “building block” of
the model which is indicated by a particular gene, plays the
role of a phenotype in the model organism. The parameters
represent regulators of the genes, the desired model being the
linear mix of genes that give the model the highest potential
for survival (see Table I). The parameter of each chromosome
is determined by the QAU algorithm.

To demonstrate, a LTIiP model is represented by a binary
string (chromosome) as follows

gene
︷ ︸︸ ︷

110000

gene
︷ ︸︸ ︷

000010
︸ ︷︷ ︸

chromosome

↔ ζ[t] = θ1

ψi1
︷︸︸︷

x[t] +θ2

ψi2
︷ ︸︸ ︷

x[t− 1]ζ[t− 1]
︸ ︷︷ ︸

LTIiP model

(3)

where i1, i2 ∈ {1, 2, . . . , |Ξψ |}. In this example, the chro-
mosome is a binary string of length 12. Broken into two
sub-strings of equal length, each six-bit string represents a
regressor function (phenotype) through a prescribed array
indexing operation. The parameters of the LTIiP model
are determined by fitting the model to the observations
{x[t], ζ[t]}t∈T

.
A viable model is one with parameter values that allow it

to effectively produce the observed ζ from the observed x.
Like evolutionary biology, survival depends on the inherent
suitability of an individual’s genetic makeup to meet the
challenges of the environment (reflected in x and ζ), and
also in the realization of that genetic potential through an
effective parameter set.

B. Set Measures

The set-theoretic aspects of the identification constrain
the sets of parameters to those that are feasible in light
of the observations and the error constraints. In turn, they
determine the range and statistical viability of phenotypes,
and ultimately the plight of the chromosomes. Hence, starting
with a population P , a set of candidate models {ζp,j [t] =
(θj)Tψj{t, x, ζ}} of size |P|, the performance of each
model (corresponding to a chromosome) is evaluated via an
objective function derived from the set measure properties
of the QAU algorithm.

For simplicity, in the experiments below the error energy
associated with the central estimate is used as the objective
function

gj = 1/
∑

t∈T

(ζ[t]− ζp,j [t])2 (4)

where ζp,j ∈ P , j ∈ {1, 2, . . . , |P|} is the estimated
output using the ellipsoid center. Thus gj is the reciprocal of
the error energy associated with candidate model j. Sigma
scaling is used to map the object values g to the fitness values
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f [16]

f j =

{

1 + gj−g
2σ

, σ 6= 0

1, σ = 0
(5)

where g and σ are the mean and the standard deviation of
the object values of the population, respectively. A model
that can produce a satisfactory estimate of the output will
have a high fitness value, f .

Each chromosome is assigned a fitness value derived from
the objective function which is then used in the selection to
bias the new population towards more fit individuals. Highly
fit individuals have a high probability of being selected
for reproduction. The process continues through subsequent
generations. The average fitness of the population increases
as more fit individuals appear and interbreed, and the less fit
individuals die out. The evolutionary selection algorithm is
terminated when a certain number of generations is reached
or the fitness values in the population reaches a prescribed
maximum. Evolutionary operations, mutation, reproduction
and replacement, are used. Algorithm 1 summarizes the
process, and the details regarding evolutionary operators can
be found in [4].

Algorithm 1: Evolutionary Model Selection

Data: Observation subsequences x, ζ
Result: Best fitting model
Initialization :

➀ population P of size |P|
➁ maximum generation Nmax

➂ crossover and mutation rate
➃ QAU algorithm initialization

/* Regressor selection starts */
for t← 1 to Nmax do

for j ← 1 to |P| do
QAU ;
calculate objective values gj of each individual;
calculate fitness values f j of each individual;

end
selection;
crossover;
mutation;
replacement;

end

IV. EXPERIMENTS AND DISCUSSION

A. System Description

The evolutionary identification algorithm is applied to the
identification of a simulated microbial growth process. The
growth rate is modeled by Monod Kinetics [3], [17], [18] as
follows (τ denotes continuous time)

dM

dτ
=
aM(τ)S

S + b
−M(τ)x(τ) (6)

dS

dτ
=
caM(τ)S(τ)

S(τ) + b
+ (Sin − S(τ))x(τ) (7)

where M(τ) represents the microbial concentration in the
process at time τ ; S(τ) is the substrate concentration in the
process; x(τ) is the dilution rate and also system input; a is
the maximum growth rate; b is the saturation parameter; c is
the yield factor; and Sin is the inlet substrate concentration.
M(τ) and S(τ) are state variables; a, b, and c are system
parameters; and Sin is a constant. We assume that S is
observed at discrete time instants

ζ[t] = S(t) + e∗[t], t = 1, 2, 3, . . . (8)

where e∗ is the measurement noise sequence, which is
unknown, but pointwise-bounded. The system parameters are
set to: a = 0.55, b = 0.15, c = 2, and Sin = 0.8. The input
x is assumed known. A set of 2000 sampled input-output
pairs {x[t], ζ[t]}t∈T

is generated from the model above and
plotted in Fig. 1.
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Fig. 1. Simulated Monod Kinetics: Sampled input and output data

B. Evolutionary System Identification

The proposed evolutionary model selection algorithm is
applied using the input, output pairs generated above to
identify the system. In the initialization of the algorithm, the
population size is 20 per generation, the number of iterations
Nmax is 100. We use one-point crossover. The crossover
rate is 1.0 and mutation rate is 0.003 per site. The length
of the chromosome is 24 genes, with six-bit coding for each
gene, yielding 26 possible regressor functions ψq . Hence,
there are 679120 different estimation models. The set Ξψ
of regressor functions contains various linear, and nonlinear
expressions of combinations of short-delay samples of x and
ζ. Specifically, Ξψ contains ψq functions which operate on
input samples x to delay 3 and output samples ζ to delay 4.
The nonlinear expression are polynomial combinations of x
and ζ. For instance, x[t− 1], x[t− 2]ζ[t− 3].

The result of fitting the observations {x[t], ζ[t]}t∈T
with

the model selected by the evolutionary system identification
algorithm is shown in Fig. 2. The model selected can be
observed to exhibit excellent tracking ability.

For comparison, the same input-output observations are
fitted using an autoregressive with exogenous input (ARX)
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Fig. 2. System identification result using proposed evolutionary model se-
lection algorithm: True data (dash-dot curve) and estimated data (continuous
curve).

model of the form

ζ̂[t] = a1ζ[t−1]+· · ·+asζ[t−s]+b0x[t]+· · ·+brx[t−r] (9)

The model also corresponds to a special case of evolutionary
algorithm for model selection when {ψq} are just delayed
samples of x and ζ. The parameters are estimated using
least square error optimization. The results of fitting the
observations {x[t], ζ[t]}t∈T

with s = 4, r = 3 are shown in
Fig. 3. The system output is significantly better reconstructed
in Fig. 2. Thus, using evolutionary nonlinear model selection
is superior to fitting the observations with the linear model
(ARX). Note that the nonlinear character of the model was
discovered automatically via evolution. No prior knowledge
of the Monod kinetics was available to the estimator.
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Fig. 3. System identification result using ARX model: True data (dash-dot
curve) and estimated data (continuous curve).

V. CONCLUSION

A biologically-inspired framework for nonlinear system
identification based on set-theoretic estimation has been pre-

sented. Whereas conventional model identification focuses
on the estimation of parameters, the framework presented
here simultaneously addresses model selection and parame-
ter estimation. The approach synergistically integrates three
modeling and identification strategies that are not commonly
employed in signal processing: (i) LTIiP models, (ii) set-
based parameter identification, and, (iii) evolutionary strate-
gies for optimization over fitness measures derived from the
set solutions.

As an application, a highly-nonlinear system commonly
used to model microbial growth rates was identified without
knowledge of the true system dynamics. The evolutionary
algorithm produces excellent tracking of the microbial pop-
ulation growth relative to a conventional linear time-series
model.
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