
A Fast Sequence Assembly Method Based on Compressed Data
Structures

Peifeng Liang, Yancong Zhang, Kui Lin and Jinglu Hu

Abstract— Assembling a large genome using next generation
sequencing reads requires large computer memory and a long
execution time. To reduce these requirements, a memory and
time efficient assembler is presented from applying FM-index
in JR-Assembler, called FMJ-Assembler, where FM stand for
FMR-index derived from the FM-index and BWT and J for
jumping extension. The FMJ-Assembler uses expanded FM-
index and BWT to compress data of reads to save memory
and jumping extension method make it faster in CPU time.
An extensive comparison of the FMJ-Assembler with current
assemblers shows that the FMJ-Assembler achieves a better
or comparable overall assembly quality and requires lower
memory use and less CPU time. All these advantages of
the FMJ-Assembler indicate that the FMJ-Assembler will be
an efficient assembly method in next generation sequencing
technology.

I. INTRODUCTION
Since the first DNA sequences were obtained in the early

1970s, the advent of DNA sequencing has significantly ac-
celerated biological and biomedical research and discovery.
Several sequencing strategies such as the chain termination
method and shotgun methods were developed for sequencing
from short DNA fragments to even the full genome. Over
the past several years, next-generation DNA sequencing
technologies have catapulted to prominence with increasingly
widespread adoption of several platforms that individually
implement different flavors of massively parallel cyclic-array
sequencing. At the same time, the efficient computational
techniques are required to process and analyze the data.
High throughput sequencing has also generated new analysis
challenges, it needs more memory and CPU time. As whole
genome sequencing is now a routine experimental measure,
efficient algorithms and softwares in saving memory or CPU
time are needed that can scale to match the data generated.
This is particularly important for the computationally de-
manding de novo assembly problem.

Many assembly algorithms for the next-generation se-
quencing technologies based on eulerian path and de Bruijn
graph, such as Velvet [10] and ALLPATHS [4] require
much memory space, for they need much graph calculation.
The other techniques used for reconstructing the underlying
sequence from the short fragments are how to save memory
in assembly algorithms. Recently, some techniques were in-
troduced for reducing memory consumption, which included

Peifeng Liang and Jinglu Hu are with the Graduate School of
Information Production and Systems, WASEDA University, 2-7 Hi-
bikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan, (email: liang-
peifeng@akane.waseda.jp;jinglu@waseda.jp).

Yancong Zhang and Kui Lin are with College of Life Sciences, Beijing
Normal University, 19 Xinjiekou Outer St, Haidian, Beijing, China, (email:
linkui@bnu.edu.cn; zhangyc201211@gmail.com).

the use of sparse graph representations, compressed graph
data structures, Bloom filters and the FM-index for efficient
overlap calculation [6]. This new class of memory efficient
assemblers allows the analysis of much larger data sets. But
in practice, most of this kind of algorithms take too much
CPU time.

JR-Assembler [2] is an efficient algorithms in saving CPU
time. Because it is based on overlap-layout, it needs less
memory space than the de Bruijn graph based approaches.
The JR-Assembler builds index based on binary search tree
rather than compressed data structure, however, it takes more
memory space than some compressed data structure based
approaches, such as SGR-Assembler [8]. FM-index [3] is
an efficient method in searching a substring in a compressed
string and saving memory space. Here, we expand FM-index
of a single string to a set of reads’ FM-index, and apply it in
JR-Assembler to design a new read assembly method, called
FMJ-Assembler. The proposed FMJ-Assembler applies FM-
index because it is an efficacious structure in saving memory.
And jumping extension method can speed up extension and
readily jump over small repeats. For large genomes, the FMJ-
Assembler is an efficient in memory use and run time.

II. THE EXPANDED FM-INDEX

The advantage of the FMJ-Assembler is that it uses a
expanded FM-index structure to build a searching index for
a set of reads, which make the FMJ-Assembler use less
memory space and search overlap between the reads rapidly.
In this section, the expanded FM-index of a set of reads is
introduced called FMR-index [8], which is expanded from
suffix array(SA), BWT and FM-index [3]. The FMR-index is
used to build index for reads in the in the FMJ-Assembler.
Using FMR-index of the reads data, the FMJ-Assembler can
search overlaps between reads rapidly using backwardsearch
method [3] in seed extension stage.

Since the FMJ-Assembler processes a collection of reads,
the data structures of SA, BWT and FM-index can’t be used
in it. The SA can be expanded a suffix array of a set of
strings. Consider a set of strings T = {T1,T2, . . . ,Tm} over
a constant-size alphabet Σ. We assume that the total length
of all strings collections as n and each text Ti starts with a
special character $ in Σ, where $ is alphabetically smaller
than all other characters in Σ and it does not appear in any
other part of a text. For i in [1,n], define:

SAc [i] = (j,k) (1)

if Tj[k, |Tj|] is the i-th lowest suffix in T . And the definition

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 326

of BWT is expanded to a set of strings as follow:

BWTc [i] =
{

Tj [k−1] k > 1
$ k = 1 (2)

Like the BWT of a single string, BWTc is a permutation
of the symbols in T . The auxiliary data structures for the
FMR-index Cc(a) and Occc(a, i) are the same as C(a) and
Occ(a, i) in [3].

III. ALGORITHM OVERVIEW

In this section, the proposed FMJ-Assembler’s brief
overview is introduced. The method of the FMJ-Assembler
is similar as the JR-Assembler, which is based on jumping
extension. Specifically, this method includes the following
parts: preprocessing of raw reads, building FMR-index for
preprocessed reads, assembling reads and detecting repeats.
Preprocessing of reads includes correcting bases error in
raw reads and other necessary procedures that can improve
assembly quality. Assembling reads applies assembly tech-
nique to merge reads onto longer fragments. In detecting
repeats stage, assembler finds repeats and processes them,
then outputs contigs. Fig.1 depicts the flow of data through
the algorithm pipeline.

Fig. 1. The diagram of the flow of algorithm

A. Preprocessing raw reads
Preprocessing raw reads which is very important for a

assembler to get high quality assembly result includes filter-
ing out bad reads and correcting bases’ errors based k-mer
frequencies. In the FMJ-Assembler, bad reads that contain
any “N” or any low complexity region are filtered out from
raw dataset, as bad reads containing “N” is noninformative
or bad reads containing any low complexity region may lead
to false positive overlaps with other reads. When input reads
have too many sequencing errors at the 3’end, assembler
algorithm may not be able to find correct overlapping reads
for selected seeds to do the extension and may thus generate
a set of very short contigs. So the FMJ-Assembler trims input

reads at 3’end into shorter but better quality reads. Then the
FMJ-Assembler corrects trimmed reads using a correction
algorithm based k-mer [5], which is an efficient correction
algorithm with less memory.
B. Building FMR-index and Overlap detection

1) Building FMR-index: After Processing and Correcting
raw reads, the FMJ-Assembler collapses them into one
unique read and records its frequency c. Then the FMJ-
Assembler computes SAc and FMR-index for identical reads
and their reverse-complements.

Considering R be a set of preprocessed reads. To build
the FMR-index of R, we must first compute the generalized
SAc of R. Let S = R1,R2, . . . ,Rm be a concatenation of
all members of R. SAc can be computed using a efficient
algorithm [7]. Once SAc has been constructed, the BWTc
of R, and hence the FMR-index is easily computed as
described in section II. We also compute the FMR-index for
the set of reversed reads, denoted Rr, which is necessary
to compute overlaps between reverse complemented reads.
We also output the lexographic index of R, which is a
permutation of the indices {1,2, . . . , |R|} of R sorted by the
lexographic order of the strings. This can be found directly
from SAc and is used to determine the identities of the reads
in R from the suffix array interval positions once an overlap
has been found.

2) Overlap detection based on FMR-index: Before in-
troducing read extension, we first present the method of
overlap detection based on FMR-index, which will be used
in next subsection. It is important to detect overlap between
reads in this algorithm, as the FMJ-Assembler is a overlap-
layout based algorithm. The FMJ-Assembler needs to search
a read’s overlap with other reads rapidly. This procedure
is similar to alignment method which searchs the position
of a substring in reference string. In [3], backwardsSearch
method searches for a string P in T using C(a) and Occ(a,1).
Let S is a string whose suffix array interval is known to be
[l,u]. The interval for the string aS can be calculated from
[l,u] using C and Occ by the following:

l′ =C (a)+Occ(a, l−1) (3)

u′ =C (a)+Occ(a,u)−1 (4)

After constructing SAc and BWTc, the set of tmin overlaps
between reads in R can be computed. Let X be an arbitrary
read in R. After performing k steps the backwardsSearch
procedure [3] on the string X , the interval [l,u] for the suffix
of length k of X can be calculated. The reads indicated by
the suffix array entries in [l,u] therefore have a substring that
matches a suffix of X , denoted Q. Then the interval for the
strings beginning with Q can be determined by calculating
the interval for the string Q using equations (3) and (4). The
algorithm is presented below in f indOverlaps.

After preprocessing the raw reads and building FMR-index
for preprocessed reads, the FMJ-Assembler begins assembly
reads with jumping-extension method. This procedure similar
to [2], that includes selecting good seed, extending seed and
processing repeat. After this stage, contigs would be got.

327

Algorithm 1 findOverlaps
Input: Read X ; minimal length overlap t.
Output: the interval [l,u] for reads that have a prefix match-

ing the suffix of X ;
1: function FINDOVERLAP(X , t)
2: i← |X |
3: l←Cc(X [i])
4: u←Cc(X [i]+1)−1
5: i← i−1
6: while (l ≤ u)&(i≥ 1) do
7: if |X |− i+1≥ t then
8: [l$,u$]← updateBackwards([l,u],$)
9: if l$ ≤ u$ then

10: outputOverlaps (X , [l$,u$])
11: end if
12: end if
13: [l,u]← updateBackward ([l,u],X [i])
14: i← i−1
15: end while
16: if l ≤ u then
17: outputContained (X , [l,u])
18: end if
19: end function

C. Read extension
1) Seed Selection: In an extension-based assembler, a

good seed should not contain any sequencing errors and
should not be selected from a repeat region. A read con-
taining sequencing errors usually has a very low read count.
On the other hand, a read from a repeat region usually has
a high read count because identical reads from other repeat
loci are counted as well. Thus, in seed selection, reads with a
very low or a very high read count should be avoided. Those
read counts ranked in between 1% and 25% are selected as
the seeds for extension.

2) Seed Extension: In this stage, the FMJ-Assembler
extends seeds’ 3’end and 5’end into a long fragment. Given
a seed, the FMJ-Assembler first extends its 3’end and then
its 5’end. To extend a seed Rseed at the 3’end, the FMJ-
Assembler searches all unassembled unique reads for extend-
able reads. A read is extendable for Rseed if its 5’end overlaps
with the 3’end of Rseed and its 3’end overlaps with one or
more unique reads, for example, R1,R2, · · · ,R5 in Fig.2.

Fig. 2. The diagram of two extension candidates

In Fig.2 two extension candidates, Ra and Rb, are found
for a jumping extension. The bold parts in R4, R5 indicate
that the corresponding bases are identical between R4 and
R5 but cannot be aligned with the corresponding regions of
R1, R2 and R3. In case 1, three connecting reads R1, R2 and
R3 connect Rseed and Ra. This process is shown as Fig.3.

Fig. 3. The diagram of jumping extension A

The process of connecting Rseed and a unique read is
termed a jump in this study. In Fig.3, to fill the gap between
Rseed and Ra, the FMJ-Assembler constructs a consensus
sequence Ca(R1,R2,R3) from the connecting reads, shown in
bold line. After a jump, an extension candidate Ea is built by
concatenating Rseed , Ca(R1,R2,R3) and Ra. Similarly, in case
2 another extension candidate Eb is built by concatenating
Rseed , Ca(R4,R5) and Rb.

When a Rseed comes from a repeat, there can be more than
one extension candidate. The FMJ-Assembler has to decide
which one is better. Define a supporting score Sa:

Sa =
Na

la− l +1
(5)

where la is the length of Ea, l is the length of reads and
Na is the number of unique reads in R that can be remapped
onto Ea(Fig.3). If the score Sa is less than the cutoff (0.3 by
default), that is, without enough reads support the extension,
which is neglected. In this algorithm, the FMJ-Assembler
selects the candidate with the highest score for extension
and deals with the repeat problem later. All unique reads
that can be remapped onto this extension are then labeled
as assembled. Assembled unique reads will not be used in
the remaining extensions. The process is repeated until the
3’ and 5’ends cannot be extended anymore.

In some condition, an extension may not be proceeded
because of sequencing errors at the read tail. The FMJ-
Assembler uses a back trimming method to solve this prob-
lem. The FMJ-Assembler trims one base from the end of the
last extended sequence and checks whether a jump is possible
from the trimmed sequence. If not, the trimming continues
until a jump is possible or until the previous extension is
reached. When a jump is made, the extension and back
trimming procedures resume until no jump can be made
further. Once the extension at the 3’end is done, the FMJ-
Assembler starts to extend the 5’end of the initial seed by the
same two procedures. After the extensions at both ends are
completed, a long fragment is obtained. After completing
extensions, the FMJ-Assembler has to detect repeat using
a repeat detection method [2]. After this procedure, contigs
can be obtained. In this algorithm, merging contigs to longer

328

scaffolds is not considered, but SSPACE [1] or SOAPdenovo
[5] can be used to scaffold the contigs.

IV. RESULT AND DISCUSSION

A. Datasets and Environments

In order to evaluate the effectiveness of this algorithm,
we employ two SRS datasets of E.coli and S.roseosporus
from the National Center for Biotechnology Information
(NCBI) Short Read Archive (SRA) with the accession
nos SRX016044 and SRX026747. We compared the FMJ-
Assembler with other algorithm: JR-Assembler [2], SGA [8],
ABySS1.2.6 [9], Velvet1.0.19 [10], SOAPdenovo2 [5] and
ALLPATHS-LG [4]. These algorithms are implemented in
Linux operating system, and the computational experiments
are carried out on a Dell Server with a 1.6GHz eight-core
Intel Xeon E5310 processors and 48GB of RAM.

B. Comparison for Assembling the Escherichia coli Genome
E.coli genome provides a good real-world test case for

assembly algorithms because it has a complete and accurate
reference sequence. The dataset consists of 10.3M read pairs
sequenced using the Illumina Genome Analyzer II. The mean
DNA fragments size is 300 bp from which reads of length
100 bp were taken from both ends of the fragments.

As sequence assemblers are often sensitive to the input
parameters. The de Bruijn graph assemblers were run for
all odd k-mer sizes between 51 and 73 (inclusive). The k-
mer size was selected for further analysis (57 for ABySS,
53 for Velvet, 59 for SOAPdenovo and ALLPATHS-LG, 41
for SGA error correction, 55 for SGA’s minimum overlap).
Similarly, for JR-Assembler and the FMJ-Assembler, we set
30 for minimum overlap and 45 for maximum overlap. In
FMJ-Assembler, we trim read’s 3’end to reduce base errors,
and length of reads become 85 bps.

TABLE I
ASSEMBLY STATISTICS OF THE E.COLI DATASET

BY DIFFERENT ASSEMBLERS
contigs Sum∗ Max Mean N50 time$ Mem&

FMJ 211 4.53 178,523 21,469 42,869 4.7 5.5
JR 201 4.53 195,963 22,537 43,656 4.3 6.3

SOAP* 286 4.53 120,146 15,839 32,163 3.2 20.2
ABySS 245 4.54 140,105 18,530 37,656 12.3 28.4

SGA 436 4.53 135,365 10,389 20.357 18.1 5.0
velvet 220 4.54 140,114 20,636 42,556 8.0 30.2
ALL* 221 4.54 180,325 20,542 45,568 10.6 35.0

SOAP*: SOAPdenovo, ALL*: ALLPATHS-LG, *: Mbps, $: hour, &: GB.
*N50 is the size of the smallest contig such that 50% of the assembled
bases are in the contigs of size equal to or larger than the N50 value.
*Contigs of length < 300 bp were not counted.

Table I shows the assembly statistics by these seven
assemblers. The FMJ-assembler was better than the JR-
assembler in saving memory and better than SGA in run
time. But the FMJ-assembler used more memory than SGA.
SGA used compression structure in all process, which was
the reason of taking more CPU time. In the FMJ-Assembler,
preprocessing reads did not work in compression structure.
This process required more memory than SGA. Because
building FM-index took some CPU time, the FMJ-Assembler
spent more time than JR-assembler. For assembly result,

the FMJ-Assembler was close to JR-assembler but better
than other assembler in most assembly metrics. ABySS,
SOAPdenovo and ALLPATHS-LG did not use compression
structure, so they required more memory 20-35 GB.
C. Comparison for Assembling the S.roseosporus Genome

S.roseosporus genome included 7.7Mb mega base pairs.
We assembled it with the FMJ-Assembler, JR-assembler
and SOAPdenovo. ABySS and ALLPATHS-LG required too
much memory to run completely and SGA took too much
time. The results as Table II. From the result in this table,
the FMJ-Assembler can save much memory and similar to
general algorithm in run time. All these results demonstrate
that the FMJ-Assemble could be an effective approach to
sequence assemble in saving memory and run time.

TABLE II
ASSEMBLY STATISTICS OF THE S.ROSEOSPORUS

contigs Sum∗ Max Mean N50 time$ Mem&

FMJ 1210 7.65 43,521 6,322 10,645 11.7 28
JR 1195 7.67 40,345 6,418 11,256 10.2 32

SOAP* 2256 7.65 30,146 3,391 4,703 6.2 39
SOAP*: SOAPdenovo, *: Mbps, $: hour, &: GB.

V. CONCLUSIONS
This work presents an assemble algorithm called FMJ-

Assembler based on FMR-index and Jumping extension.
The most important feature of the FMJ-Assembler is that
it can save memory while doesn’t require too much CPU
time. For Illumina reads, such as SRS data of genomes,
FMJ-Assembler requires less memory than JR-Assembler
and other algorithm based on de Bruijn graph and is more
efficient than SGA-Assembler in CPU time.

REFERENCES

[1] M. Boetzer, C. V. Henkel, H. J. Jansen, D. Butler, and W. Pirovano,
“Scaffolding pre-assembled contigs using sspace,” Bioinformatics,
vol. 27, no. 4, pp. 578–579, 2011.

[2] T.-C. Chu, C.-H. Lu, T. Liu, G. C. Lee, W.-H. Li, and A. C.-C. Shih,
“Assembler for de novo assembly of large genomes,” Proceedings of
the National Academy of Sciences, vol. 110, no. 36, pp. E3417–E3424,
2013.

[3] P. Ferragina and G. Manzini, “Opportunistic data structures with
applications,” in Foundations of Computer Science, 2000. Proceedings.
41st Annual Symposium on. IEEE, 2000, pp. 390–398.

[4] S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro, J. N. Burton,
B. J. Walker, T. Sharpe, G. Hall, T. P. Shea, S. Sykes et al., “High-
quality draft assemblies of mammalian genomes from massively
parallel sequence data,” Proceedings of the National Academy of
Sciences, vol. 108, no. 4, pp. 1513–1518, 2011.

[5] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen,
Q. Pan, Y. Liu et al., “Soapdenovo2: an empirically improved memory-
efficient short-read de novo assembler,” GigaScience, vol. 1, no. 1,
p. 18, 2012.

[6] N. Nagarajan and M. Pop, “Sequence assembly demystified,” Nature
Reviews Genetics, vol. 14, no. 3, pp. 157–167, 2013.

[7] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy of suffix
array construction algorithms,” ACM Computing Surveys (CSUR),
vol. 39, no. 2, p. 4, 2007.

[8] J. T. Simpson and R. Durbin, “Efficient de novo assembly of
large genomes using compressed data structures,” Genome Research,
vol. 22, no. 3, pp. 549–556, 2012.

[9] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
İ. Birol, “Abyss: a parallel assembler for short read sequence data,”
Genome research, vol. 19, no. 6, pp. 1117–1123, 2009.

[10] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read
assembly using de bruijn graphs,” Genome research, vol. 18, no. 5,
pp. 821–829, 2008.

329

