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Abstract— Using Monte Carlo simulations we optimized the
wavelength and source-detector distance (SDD) of a reflectance-
based spectroscopic device used for measuring subcutaneous fat
thickness. As the optical properties of muscle, fat and dermis
are wavelength dependent, it is necessary to choose a wavelength
that is highly sensitive to fat but insensitive to water and
melanin. The SDD is important since it determines average
photon penetration depth. With a tissue optics plug-in for the
GEANT4/GAMOS system and published ex vivo tissue optical
properties we were able to predict the behavior of different
device configurations when used with varying thicknesses of fat,
melanin concentrations or hydration levels. Our results indicate
that the ideal wavelengths for fat measurement are 630-650 nm
with an SDD of 2.6-29 cm. We also examined the potential
of using near infrared (NIR) spectroscopy to determine tissue
hydration levels, but concluded that this wavelength range was
not ideal.

INTRODUCTION

There is a demand for a cheap, accurate, noninvasive
fat measurement in various fields such as the diagnosis
of infantile malnutrition in developing countries, in-home
body fat assessment and proper calibration of skin surface
near-infrared spectroscopy diagnostics of blood constituents.
Currently techniques are available to measure body fat, but
they are either expensive, bulky, require extensive training
or inaccurate. The gold standard techniques with the highest
accuracy are air displacement plethysmography (PEAPOD
or BODPOD), dual-energy X-ray absorptiometry (DXA)
and hydrostatic weighing [1]. While increasing the accuracy
of these instruments is an active area of research, many
applications require more portable and reasonably priced
alternatives.

Measuring subcutaneous fat thickness is necessary for
critical health and wellbeing applications in which it can
confound readings of tissues that lie beneath it [2]. Accurate
fat thickness measurements could increase the accuracy of
techniques such as pulse oximetry, vein finding for can-
nulation and optoacoustic imaging. For applications which
directly measure fat thickness, such as body composition,
it has been shown that there is a high correlation between
subcutaneous fat thickness and overall fat mass in both
newborns [3] and adults [4].

Our primary focus is to aid in the diagnosis of infantile
malnutrition in resource-limited settings. A recent study
reported that over one-third of all child deaths are attributed
to malnutrition [5]. The optimization will be centered on the
clinically determined threshold for neonatal health of 5 mm
of fat [6].

In resource-limited settings, skinfold thickness testing via
calipers and anthropometric statistics are the most common

measurement techniques [7]. Skinfold thickness testing can
be reasonably accurate, but requires sufficient training [8].
Anthropometric statistics such as weight and length are
frequently used with moderate accuracy [9], but this can also
require excessive training and equipment [10]. Bioelectrical
impedance analysis is a recently developed technique that
is relatively inexpensive and easy-to-use, but is not more
accurate than using solely anthropometric statistics in some
cases [11]. NIR spectroscopy is noninvasive, cheap and has
the potential to be highly accurate [4].

To date, there have been no studies that analytically
optimize the geometry and spectroscopic specifications of
a NIR-based body fat thickness measurement device. Given
the high absorption coefficient of water [12], the high tissue
water content [13] and the variance in total body water
composition [14], it is important to minimize the impact on
fat thickness readings. Melanin is also a strong absorber [15]
and can confound readings by varying with body location and
between individuals [16].

As shown in Figure 1, muscle and fat have distinct,
wavelength-dependent absorption and scattering spectrums.
In order to determine the thickness of fat, the amount of
light reflected back out of the skin is measured. This is
done with a source LED and a photodetector. From the
amount of reflected light, it is possible to determine how
much fat or muscle has interacted with the light since it
left the source LED. The distance between the LED and the
detector, determines the average photon penetration depth
[17], and therefore the composition of tissue it has traveled
through. In order to optimize this process, it is necessary to
use a wavelength and source-detector distance with a large
difference in reflectance relative to fat thickness changes
and a low difference in reflectance relative to hydration and
melanin changes.

Published optical properties of ex vivo tissues [18], water
[12] and melanin [15] allow for accurate simulation and
optimization. Our primary hypothesis was that we would
be able to optimize the source-detector distance and wave-
length combination for the measurement of fat thickness.
Additionally we looked at device specifications to optimize
hydration sensitivity in order to determine total body water.
We did not look at optimizing melanin sensitivity as that
has limited clinical relevance. In order to find the optimal
design, we used a Monte Carlo simulation to simulate the
photon transport in multi-layered biological media between
a source and detector [19], [20].
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Fig. 1. Difference in muscle and fat absorption (dotted, left axis) and
scattering (solid, right axis) coefficients in inverse centimeters.

MATERIALS AND METHODS

Scattering and absorption coefficients

In order to predict the reflectance of a layered system it is
first necessary to know the optical coefficients of each layer.
The scattering (µs) and absorption (µa) coefficients quantify
the average number of scattering or absorption phenomena
per unit path length of photon travel. In order to take into
account the anisotropy of scattering (g), or whether scattered
particles predominately continue forward (g=1), backward
(g=-1) or uniformly in all directions (g=0), the reduced
scattering coefficient (µ′

s) is used. This value is calculated
as the product of µs and (1-g).
Hydration modulation

In order to assess hydration sensitivity it was necessary to
simulate the affect of varying tissue water content on optical
properties. This was done using equations 1-3.

µabs,f,hydr = αf τµabs,water + (1− αf τ) · µabs,f (1)
µabs,m,hydr = αmτµabs,water + (1− αmτ) · µabs,m (2)
µabs,d,hydr = αdτµabs,water + (1− αdτ) · µabs,d (3)

where µabs,x,hydr is the new absorption coefficient for fat
(f), muscle (m) or dermis (d) with a new hydration level,αxis
the average water composition (65% for dermis, 20% for fat
and 75% for muscle [23]), τ is the change in hydration level
(.05 is 5% more than average, -.05 is 5% less than average),
µabs,water is the absorption profile for water [12] and µabs,x

is the absorption profile of muscle, fat or dermis [18]. These
equations generate new coefficients of absorption which are
then fed into the Monte Carlo simulations to estimate the
effect of hydration changes. While they may deviate from the
actual reflectance values, our hypothesis is that they should
represent the relative changes in the reflectance profiles.

Refractive index determination

The refractive indices for tissue are also wavelength de-
pendent. The values for fat and muscle are based off the
Cauchy coefficients calculated for porcine models [21]. In
the absence of wavelength-dependent refractive index data
for dermis the value was assumed to be 1.4 [22].

GAMOS/GEANT4 Tissue- Optics Plug in

We use Monte Carlo simulations to predict the number
of photons that will reach the detector. This is ideal be-
cause the scattering and absorption coefficients essentially
represent probabilities and by running many simulations we

can estimate the expected number of photons to reach the
detector for a given system.

The layout of our model is shown in Figure 2. The
underlying green layer is muscle. The blue layer is fat with
a thickness that changes from 1mm to 10mm throughout a
simulation. The white layer is a layer of dermis that is 1.2
mm thick [23]. The red box is a 5 mm by 5 mm detector that
reports hits. Photons enter the very center of the model. By
altering the optical properties of these layers (to represent
hydration changes), the thickness of fat, type of dermis
(Caucasian or Negroid) and the source-detector distance, it
is possible to collect the necessary data to optimize this
technique.

Model specifications

In order to acquire the necessary data for optimization,
the Monte Carlo simulations were run on models with
Caucasian dermis and normal hydration from 1 to 10 mm
of fat in increments of 1 mm, Negroid dermis with normal
hydration and 5 mm of fat and dehydrated (-20%) and
hydrated (20%) Caucasian dermis with 5 mm of fat. Each
simulation examined source-detector separations of 1.5 to
2.9 cm in increments of 0.1 cm and wavelengths from
620 to 1000 nm in increments of 10 nm. The number of
photons simulated was 8·106. Source-detector distance in this
range were examined as they will produce average photon
penetration depths on the order of 5 mm for the wavelengths
considered [17].

Normalization

In order to properly assess the signal, each term in
Equation 4 is divided by the number of photons to reach the
detector for a normally hydrated, Caucasian-dermis system
with 5 mm of fat for each wavelength/SDD combination.
Smaller SDDs have stronger signals and therefore all the
signal statistics are higher.

Optimization Procedure

The optimal wavelength and source-detector distance com-
bination will have a high sensitivity to fat thickness changes,
a constant change in signal with respect to fat thickness, and
a low sensitivity to hydration and melanin changes. The goal
is to optimize this value:

VF =

(
δS

δFat

)
−
∑

(ŜF − SF,n)
2 −

(
δS

δHdr

)
−
(

δS

δMel

)
(4)

(λF , SDDF ) = maxλ,SDD(VF ) (5)

where S is the count of photons to reach the detector,
ŜF is the average change in counts per mm change in fat
and SF,n is the change in counts from thickness n-1 mm to
thickness n mm. The first term is the mean signal change
relative to fat thickness and the second term represents
the variance in this signal change at different thicknesses.
Optimizing based on these two terms will give the ideal
specifications for fat detection without taking into account
the confounding influence of hydration (Hdr) or melanin
(Mel) changes. The third and fourth terms represent these
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influences. λF and SDDF are the optimal wavelength and
source-detector distance, respectively. If, via another LED or
separate measurement technique, hydration level is known,
then it is not necessary to include the third term. The same is
true for melanin measurement and the fourth term. Excluding
the third or fourth term in optimization will simulate the
knowledge of these factors.

Fig. 2. Left is an overview of the simulation geometry. The bottom green
layer is muscle (8 cm thick), the blue layer is fat (varying from 1 to 10
mm thick), the white layer is dermis (1.2 mm thick) and the red box is the
detector. Right is a side view of the model with the photon traces in bright
green either terminating with absorption in the tissue or scattering out as
reflection.

Fig. 3. Top left is a comparison of the number of photons to reach the de-
tector between systems with Caucasian (dotted) and Negroid (solid) dermis
on top of 5 millimeters of fat and muscle. Top right is a comparison between
hydrated (solid) and dehydrated (dotted) Caucasian systems. Bottom left is
a comparison between a system with 1 millimeter of fat and 10 millimeters
of fat under Caucasian dermis. Bottom right is a typical plot of the detector
behavior for varying fat thicknesses under Caucasian dermis.

In order to assess the efficacy of Equations 4-5 we must
calculate the error rates and sensitivities. Equation 6 calcu-
lates the error (ErrF ) in fat-reading respective to hydration
change in units of counts

% hydration . This is the dependence of the
optimal fat-reading configuration on hydration changes.

ErrF =
∑ S(20%, t, λF , SDDF )− S(−20%, t, λF , SDDF )

n · 40%Hydration
(6)

S is the signal and depends on hydration level, mm of fat
(t), wavelength and source-detector distance. The variable n
represents the hydration levels (n = 1 refers to -20% hydra-
tion change, n =2 refers to 0% hydration change and n=3
refers to +20% hydration change). Equation 7 calculates the
sensitivity (SenF ) of the optimal fat-reading configuration
for fat thickness in terms of counts

mm of fat

TABLE I
FAT OPTIMIZATION VALUES WITHOUT MELANIN
Wavelength (nm) 630 650 640

SDD (cm) 2.9 2.8 2.6
Vf 0.157 0.148 0.140

Normalized Fat Sensitivity 0.252 0.218 0.201
Normalized Fat Signal Std Dev 0.089 0.065 0.055

Normalized Hydration Sensitivity 0.0059 0.0057 0.0055
Normalized Melanin Sensitivity 0.029 0.009 0.025

Hydration Bias 0.023 0.026 0.028
Melain Bias 2.89 2.77 3.18

TABLE II
FAT OPTIMIZATION VALUES WITH MELANIN

Wavelength (nm) 1000 980 980
SDD (cm) 1.9 2.4 2.5

Vf 0.063 0.051 0.033
Normalized Fat Sensitivity 0.093 0.151 0.130

Normalized Fat Signal Std Dev 0.029 0.0509 0.0782
Normalized Hydration Sensitivity 0.0013 0.0013 0.0011
Normalized Melanin Sensitivity 0.0 0.0474 0.0175

Hydration Bias -0.014 -0.0120 -0.087
Melain Bias 0.0 -0.314 -0.134

SenF =
∑
n

S(0%, n+ 1, λF , SDDF )− S(0%, n, λF , SDDF )

n ·mmfat
(7)

In this case, n refers to the thickness of fat (n = 1 refers
to 1 mm of fat).

BiasF =
ErrorF

SensitivityF
(8)

Equation 8 calculates the error in fat-reading due to
hydration changes in terms of mm of fat

% hydration . Melanin-related
error and bias are calculated in a similar manner, but with
the difference between Caucasian and Negroid models.

RESULTS

The results for different system parameters are shown in
Figure 3. If only the first 3 terms of Equation 4 are taken
into account (and the influence of melanin is neglected),
the optimal specifications are estimated to be 630 nm at a
separation of 2.9 cm. These results are summarized in Table
1. Values are given as a fraction of total signal for a normally
hydrated system with Caucasian dermis and 5 mm of fat. The
biases are in terms of either mm of fat

% hydration or mm of fat
melanin change .

If all four terms from equation 4 are taken into account, the
optimal combinations are shown in Table 2. Neglecting the
third term doesn’t change the results in Table 1 due to the
low absorption coefficient of water in this range [12].

DISCUSSION

By optimizing Equations 4-7, we found the ideal detection
wavelength and source-detection distance to measure fat
thickness. Accurately measuring fat thickness is in diagnos-
ing malnutrition or dehydration, analyzing body composition
or in calibrating other spectroscopic devices. We did not look
at measuring melanin concentration as this seems to have
limited clinical applicability, but the previously mentioned
equations could be used to this end.
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The ideal wavelengths for fat measurement, without con-
sidering melanin, are 630, 650 and 640 nm with respective
source detector separations of 2.9, 2.8 and 2.6 cm. At this
region, a 1% change in hydration should cause an error in fat
thickness sensing of approximately .02 mm. The difference
between Table 1 and Table 2 demonstrates the large impact
of melanin variance of fat assessment. Therefore it is either
necessary to calculate curves for individual ethinc groups,
determine melanin content with another LED, measure in
photoprotected areas [16] (areas not exposed to the sun),
or restrict use to neonates (who tend to have lower melanin
concentrations). If the hydration bias proves to be larger than
predicted, it could be measured with another LED and adjust
the fat prediction algorithm accordingly.

Looking at wavelengths outside the 600 to 1000 nm
range could be helpful, especially to increase hydration
sensitivity. In order to do this it will be necessary to examine
more ex vivo tissue as their precise optical properties are
unknown. Creating a more complex simulation with bone and
epidermis would also increase the clinical relevance of these
models. Additional research is necessary to determine which
location yields the highest correlation between subcutaneous
fat thickness and total body fat.

CONCLUSION

In this study we used published tissue optical coefficients
and Monte-Carlo-based particle tracking simulations to op-
timize the design of a device to measure subcutaneous fat
thickness. The ideal wavelength for fat detection is 630 nm
with a source-detector distance of 2.9 cm without considering
the effect of melanin and 1000 nm with a separation of
1.9 cm if melanin is considered. Using the results from
these simulations as a foundation for in vivo spectroscopic
measurements calibrated against a gold standard, such as a
PEAPOD or BODPOD, would be the most efficient next step
in designing a cheap, optimally accurate and non-invasive fat
thickness measurement device. While this simulation-based
optimization will be useful in guiding in-vivo optimization
trials, it has limited utility without them as it is based on a
simplified model of the skin structure.
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