
  

  

Abstract— Electromyogram (EMG) pattern recognition has 
long been used for the control of upper limb prostheses. More 
recently, it has been shown that variability induced during 
functional use, such as changes in limb position and dynamic 
contractions, can have a substantial impact on the robustness of 
EMG pattern recognition. This work further investigates the 
reasons for pattern recognition performance degradation due to 
the limb position variation. The main focus is on the impact of 
limb position variation on features of the EMG, as measured 
using separability and repeatability metrics. The results show 
that when the limb is moved to a position different from the one 
in which the classifier is trained, both the separability and 
repeatability of the data decrease. It is shown how two 
previously proposed classification methods, multiple position 
training and dual-stage classification, resolve the position effect 
problem to some extent through increasing either separability 
or repeatability but not both. A hybrid classification method 
which exhibits a compromise between separability and 
repeatability is proposed in this work. It is shown that, when 
tested with the limb in 16 different positions, this method 
increases classification accuracy from an average of 70% (single 
position training) to 89% (hybrid approach). This hybrid 
method significantly (p<0.05) outperforms multiple position 
training (an average of 86%) and dual-stage classification (an 
average of 85%). 

I. INTRODUCTION 

The surface electromyogram has been one of the major 
neural control sources for powered upper limb prostheses for 
many decades. Various EMG signal processing methods 
have been used to extract the user’s intended movement. 
Conventional myoelectric control schemes employ measures 
such as the root mean square or mean absolute value of the 
EMG to quantify the intensity of contraction in the 
underlying muscles. Control is elicited by mapping this 
activity to the desired prosthetic function. Although such 
control schemes have been widely used commercially, they 
are incapable of controlling more than one or two degrees of 
freedom (DOF). If more than one DOF is to be controlled, 
mode switching techniques are used which can be slow and 
counterintuitive [1-3].     
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Pattern recognition-based myoelectric control is an 
advanced signal processing technique that can potentially be 
used to control multiple DOFs. This technique has shown 
great promise for improved dexterity of control in upper-
limb prostheses. In this approach, a set of features containing 
spatial and temporal information about the acquired signals 
are extracted and form an input pattern to a classifier which 
determines the user’s intended movement [4, 5].  

Many researchers have used myoelectric pattern 
recognition to control upper limb prostheses and reported 
high classification accuracies using various combinations of 
pre-processing, feature extraction, classification, and post-
processing algorithms [4, 5]. These studies were done under 
ideal conditions, eliciting static contractions in constrained 
positions. In real-world prosthetic use, however, those ideal 
conditions do not exist, as the focus is on task execution in 
dynamic environments [6]. Newer studies have shown that 
several conditions, such as electrode shift [7-9], variation in 
force [10], transient changes in EMG [11, 12], and variation 
in the limb position [13-17] might affect signal patterns and 
erode the clinical robustness of the EMG pattern recognition. 
The focus of this work is the effect caused by the limb 
position variation.  

The so-called “position effect” is the degradation of 
myoelectric pattern recognition performance when the 
classifier is trained with limb in one fixed position but is 
tested or used with limb in other positions. This degradation 
is due to the impact of arm position variation on the 
muscular activation pattern when performing activities [18-
20]. A review of the literature shows that many researchers 
have demonstrated the position effect and proposed solutions 
to resolve it [13-17, 21-23]. The aim of this work is to 
explore and analyze the etiology of the position effect 
problem, rather than solely to demonstrate this problem, and 
to propose solutions to reduce that effect.  

Myoelectric pattern recognition methods look for 
patterns in the features used to represent the EMG. The 
robustness of these methods relies on two important 
characteristics of these feature patterns; distinctness (or 
separability), and repeatability. Distinctness is the difference 
in the features between motion classes, relating to their 
separability. Repeatability is the degree of coincidence 
between features extracted from training and testing data of 
each class, relating to their reproducibility. The higher the 
separability and repeatability of features, the more robust the 
classifier is.  

This work investigates the effect of limb position 
variation on the separability and repeatability of data in the 
feature space. It is assumed that limb position variation 
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reduces these characteristics of the feature patterns and that 
minimization of such reduction would result in a more robust 
control scheme.  

Multiple position training (single classifier trained in 
multiple positions) and dual-stage classification (multiple 
classifiers each trained in a single position) are two existing 
solutions [13-17] to the position effect problem. This work 
investigates how these methods affect separability and 
repeatability of data. It is hypothesized that a combination of 
these methods can optimize the classification accuracy by 
capitalizing on the trade-off between separability and 
repeatability of data.   

II. METHODOLOGY 

A. Population and Data Acquisition 
EMG data corresponding to eight classes of motion were 

collected from 10 right-handed, healthy, normally-limbed 
subjects (9 male, 1 female) within the age range of 19 to 32 
years. All experiments were approved by the University of 
New Brunswick’s Research Ethics Board.  

A Trigno Wireless System (Delsys Inc., USA) was used 
to record surface myoelectric signals. Six wireless electrodes 
were equally spaced placed around the dominant forearm, 
proximal to the elbow, at the position with largest muscle 
bulk. The six channels of EMG were band-pass filtered (20-
450Hz Butterworth) and sampled at 1 kHz by a custom data 
collection system. 

Subjects were prompted to elicit contractions 
corresponding to eight classes of motion including wrist 
flexion/extension, wrist supination/pronation, power grip, 
pinch grip, hand open, and no movement. Each contraction 
was sustained for three seconds at a moderate and repeatable 
force level, and a three second rest was given between 
subsequent contractions. This set of contractions was 
repeated in the 16 static limb positions, shown in Fig. 1. 
These positions cover the workspace in which most activities 
of daily living (ADL) are performed. Positions with odd 
numbers were located on a plane parallel to the sagittal 
plane, passing through the subject’s humerus, and positions 
with even numbers were located on the sagittal plane. P3-P6 
were carried out with the elbow bent, P9-P16 were carried 
out with the elbow straight, and the rest were carried out 
somewhere in between.  

 
Figure 1.  Subjects were asked to perform four sets of contractions 

corresponding to eight classes of motion while holding their arm in each of 
the 16 static positions shown, which are labelled P1 through P16.   

To ensure that all subjects moved their arms to the same 
set of 16 positions, the subjects were asked to stand in front 

of a white board, on which a grid of 8 cells corresponding to 
positions P1-P8 was drawn, and move the limb as if they 
want to reach the center of each cell. When data from all 
eight of these positions were collected, the board was moved 
away from the subject to elicit the other 8 positions (P9-P16) 
and data were collected from those positions as well. Before 
each session, the height of the board and the spatial 
distribution of the cells were adapted to the height and reach 
of the subject. 

Four sets of contractions were collected in each of the 16 
static positions. Two of these sets were used for training and 
two were used for testing.  

Four time-domain (TD) features including mean absolute 
value, waveform length, zero crossings, and slope sign 
changes, combined with a linear discriminant analysis (LDA) 
classifier were used in this study. This combination, 
introduced by Englehart and Hudgins [4], was chosen 
because it has been widely reported in the literature for 
pattern recognition based EMG control. EMG data were 
digitally notch filtered at 60Hz using a 3rd order Butterworth 
filter in order to remove any power line interference. Data 
were segmented for feature extraction using analysis 
windows of length 200ms, an ideal window length for real-
time application [24], with processing increments of 100ms. 

B. Analysis of Limb Position Impact on EMG Features  
Two metrics – Separability Index (SI) and Repeatability 

Index (RI) – introduced by Bunderson and Kuiken [25] were 
used to quantify the characteristics of training and testing 
data in the feature space. The SI indicates the distinctness of 
classes in the feature space by measuring interclass 
distances. The RI measures degree of coincidence between 
training and testing datasets, each possibly consisting of data 
from several repetitions. In order to more intuitively relate 
the RI metric to this ideological definition of repeatability, 
the reciprocal of the definition introduced by Bunderson and 
Kuiken [25] was used, such that a higher RI indicates better 
repeatability.  

To analyze the effect of limb position variation on EMG 
features, in the first step, data collected from each 
contraction class in one fixed position were used as the 
training data and data collected in the same position were 
used as the testing data. Then, data collected from a new 
position were successively added to the testing data until all 
16 positions were included. After each addition, the 
separability and repeatability of the data were measured to 
study the changes in the characteristics of the features as 
more variation in the limb position was added.  

C. Classification Methods 

1) Multiple position training 
When a classifier is trained with the limb in one position, 

the EMG of each motion class shapes a cluster in feature 
space. Ideally, the EMG patterns of a testing dataset 
collected in the same position should coincide with those of 
the training clusters. In this case, given that the classes are 
distinct, the classifier would be capable of correctly 
identifying those patterns. When the limb position changes, 
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the EMG may be affected and the location of the resulting 
features might be different from those of the training 
clusters, as illustrated in Fig. 2. Therefore, adding data from 
multiple positions to the testing dataset might have the effect 
of decreasing the repeatability. To avoid this problem, data 
from several limb positions can be incorporated into the 
training dataset. 

 

Figure 2.  An illustration demonstrating how changing the limb position 
affects the EMG features and moves their location in the feature space. This 
makes the training dataset (including data from position P1) and the testing 

dataset (including data from positions P2-P4), dissimilar. 

In this section, the effect of adding data from multiple 
positions to the training dataset was investigated using 
classification accuracy as well as RI and SI indices. 
Classifiers were trained in one position to begin with, and 
more positions were successively added for training until all 
16 positions were represented in the training dataset. A brute 
force method was applied, meaning that for each distinct 
number of training positions, the results were acquired for 
every possible subset of the 16 positions and then the 
average was computed.  

2) Dual-stage classification 
In a dual-stage classification approach, multiple positions 

are still involved in training, but their data are used to train 
multiple position-specific classifiers. Therefore, training 
clusters within each classifier are smaller in size and more 
separable in feature space, as illustrated in Fig. 3.  

This multi-classifier approach requires that, first, the 
originating limb position of a given test sample be 
determined. Once this is known, an EMG motion classifier, 
which is trained using data from only the detected position, 
is used to classify the test sample. Different strategies can be 
used to detect the limb position in the first stage of this 
method. It has been shown before [13] that accelerometers 
may be used to detect five limb positions with 100% 
accuracy. With this high degree of accuracy, for the purposes 
of this investigation, the limb position was assumed to be 
known. The focus herein was therefore the effect of using 
separate position-specific EMG motion classifiers on the 
separability and repeatability of classes in feature space. 
Data from each of the positions were used to train a single 
classifier resulting in generation of 16 separate position-
specific classifiers. 

3) Hybrid classification 
A hybrid approach which uses multiple classifiers each 

trained using multiple positions is proposed. It is expected 

that, this approach increases both the separability of the 
classes (due to multiple classifiers), and the repeatability 
between training and testing datasets (due to the inclusion of 
multiple positions within each classifier). This is illustrated 
in Fig. 4. 

 
Figure 3.  An illustration demonstrating that collecting data from multiple 
positions increases the size of clusters in the feature space If data from each 

position is used to train a separate classifier, separability between the 
classes (C1-C3 in the above figure) of each classifier might be increased.  

 

Figure 4.  An illustration demonstrating that if multiple classifiers are 
trained each using data from multiple positions, both repeatability between 
training and test datasets and separability between the classes (C1-C3 in the 

above figure) of each classifier might be increased. 
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Three different configurations were investigated: 1) 
training two classifiers each with eight positions, 2) training 
four classifiers each with four positions, and 3) training eight 
classifiers each with two positions. The position groupings 
for these configurations were as shown in the three rightmost 
images of Fig. 5. Each of the classifiers was used to classify 
only the portion of the test data that was collected in the 
same positions as those used to train that classifier. 

 
Figure 5.  Position groupings used for hybrid classification method. 

III. RESULTS 

A. Position Variation Effect on EMG Feature Space 
Fig. 6 shows the effect of increasing the number of test 

positions, as measured using separability and repeatability 
indices, when the classifier was trained in only one position. 
The test was repeated with the classifier trained in each 
position and the results were averaged. The results showed 
that both separability between the motion classes of the test 
dataset and repeatability between training and testing 
datasets decrease as more positions are incorporated in the 
test data. Therefore, the ability of a classifier trained in a 
single position to discriminate the classes from each other 
suffers, and the classification accuracy decreases.  

 
Figure 6.  Illustration of how, when the classifier is trained in a single 
position, increasing the number of test positions causes the separability 

between motion classes and the repeatability between training and testing 
data to decrease. For visualization purposes, the indices have been 

normalized between zero and one. The error bars indicate the standard error 
of the measurements. 

B. Multiple Position Training 
The classification accuracies when including varying 

numbers of positions (1-16) for training of the classifier are 
shown in Fig. 7. In each case, the classifier was tested with 
data from all 16 positions. For each number of training 
positions, the classification accuracies of the best possible 
subset of positions and of the average of all subsets are 
shown. These results suggest that, on average, increasing the 
number of training positions improves classification 
performance. However, the results of using the optimal 

subset of training positions indicate that there is a finite 
number of training positions beyond which classification 
accuracy drops.  

 
Figure 7.  An illustration demonstrating that for a classifier that is tested in 

16 positions, increasing the number of training positions improves the 
classification accuracy on average. However, if the optimal subset of 
positions is selected, the best performance occurs with as few as 4-6 

positions. In the figure above, the error bars indicate the standard error 
across all subjects. 

A multivariate analysis of variance (ANOVA) was 
completed on the above results and showed that training the 
classifier in more than one position significantly (p < 0.05) 
increases both the best and average classification accuracy, 
with diminishing returns once more than five positions are 
included in the training dataset.  

Fig. 8 shows the effect of training the classifier in 
multiple positions on the repeatability and separability 
indices. For every given number of training positions, the 
indices were measured only for the best performing subset of 
that number of positions. Because the classifier is tested in 
all 16 positions, increasing the number of training positions 
makes the testing and training datasets more closely coincide 
and results in higher repeatability. However, it also increases 
variance of classes in feature space and, therefore, reduces 
separability between them.  

 
Figure 8.  Illustration of how inclusion of more positions in training 

increases repeatability between training and testing datasets, but reduces 
the separability between the motion classes in the feature space. For easier 
visualization of the trends, the indices have been normalized between zero 
and one. The error bars indicate the standard error of the measurements. 

It should be noted that while the subset of training 
positions determined to be optimal was not common between 
all users, some generalities were observed. For example, 
although the optimal combination of two positions was 
different for most subjects, they all shared a common trend: 
each subset consisted of one position in which the arm was 
straight and one in which the elbow was bent.  
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C. Comparison of Classification Methods 
Fig. 9 compares the average classification accuracies for 

each of the three classification methods discussed in section 
C. The results of all three configurations of the hybrid 
classification approach are shown. In all cases, data from all 
16 positions were used for testing. 

 
Figure 9.  A comparison of the studied methods of resolving the position 
effect. It is shown that accuracy is improved by training separate position-
group specific classifiers, peaking at four subdivisions of the 16 position 
workspace, after which performance declines. The error bars indicate the 

standard error across subjects. 

The results of Fig. 9 show that the novel hybrid 
classification approach outperforms the previously proposed 
methods. An ANOVA test showed that training classifiers 
using this method produced significantly higher accuracies 
(p < 0.05) than training one classifier in 16 positions or 
training 16 classifiers each in one position. Training four 
classifiers each including four positions provided the optimal 
subdivision of position space (although no significant 
improvement was found relative to the configurations of two 
or eight).   

The average separability between motion classes and 
average repeatability between training and testing datasets 
for different classification methods and different number of 
classifiers are shown using SI and RI in Fig. 10. The results 
show that, by separating data from different subdivisions of 
the workspace and using them to train multiple classifiers (as 
done in Fig. 9), the separability between the trained clusters 
of each classifier increases. This is because, when the 
number of classifiers increases, the number of positions 
involved in their training and testing data decreases, resulting 
in a decrease in the variance of the associated clusters in 
feature space. This causes the classes to be more separable. 
This, however, results in less repeatability between the 
training and testing data. When the size of the trained 
clusters is small, despite the fact that testing data is from the 
same position, unavoidable inter-repetition variation of the 
testing data more easily causes divergence from the training 
data. 

IV. DISCUSSION 

The effect of adding more positions to the test data, when 
the classifier is trained in only one position, is shown in Fig. 
6. This suggests that the “position effect”, which results in 
decreased accuracy, manifests itself by a reduction in both 
separability and repeatability of the EMG features. 

 
Figure 10.  Illustration showing how splitting the workspace into higher 
numbers of subdivisions, resulting in fewer positions being used in the 
training of each classifier, increases the separability between the trained 

classes but decreases the repeatability between training and testing data of 
each classifier. The indices have been normalized between zero and one to 
make the trends visually comparable. The error bars indicate the standard 

error of the measurements. 

Training the classifier in multiple (1-16) positions was a 
previously proposed method to reduce these effects and, as 
shown in Fig. 7, classification accuracy was shown, on 
average, to increase with the number of training positions. 
Fig. 8 shows that this improvement in classification accuracy 
is related to the increased repeatability between the training 
and testing data. Also, Fig. 7 shows that when using the best 
possible combination of positions, classification accuracy 
quickly climbs to a maximum at 5 positions, after which the 
relative performance actually decreases. This can be 
explained by observing the decrease in separability of the 
data, despite the increase in repeatability, as the number of 
training positions rises (See Fig. 8). In fact, adding data from 
more positions to the problem increases the variance of the 
motion classes in feature space resulting in less separability 
between the classes and can eventually cause them to 
overlap. At some point, the decrease in separability has a 
bigger effect on classification performance than the increase 
in repeatability and this leads to a reduction in classification 
accuracy. Therefore, a trade-off exists between repeatability 
and separability of data, indicating that there is an optimum 
selection of training positions at which these characteristics 
of the data are balanced.  

Although the results of an ANOVA on the number of 
training positions showed that four or five positions are best 
for training, this number of positions still imposes a rather 
extensive training session for the amputee. For a clinically 
practical training session, one must weigh the incremental 
benefit against the added time and effort. Correspondingly, 
the results suggest that a suitable compromise may be to use 
only two positions for training. Observation of trends across 
the subjects indicate that one of these positions should be 
picked from the positions in which the arm is straight and 
one from the positions in which the arm is bent.  

Another approach to reduce the position effect is dual-
stage classification. Fig. 9 showed that when the number of 
desired positions is high, splitting the workspace into several 
subdivisions (to use separate position-group specific 
classifiers) is better than either training one classifier in all 
positions or training multiple classifiers each in just one 
position. The number of subdivisions (and therefore 
classifiers) should be chosen cautiously because the 
classification accuracy improves as the number of classifiers 
initially increases, but reaches an optimal number before 
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then decreasing with further subdivision of position space. 
This can be explained by studying the effect of increasing the 
number of classifiers on the characteristics of feature space. 
As shown in Fig. 10, separating data from different positions 
causes increased separability between the motion classes by 
reducing their variance. However, reduction in the size of the 
feature clusters also leads to a reduction in repeatability 
between training and testing data, which tends to increase 
classification error. Therefore, again, there is a trade-off 
between separability and repeatability. The results showed 
that for the 16 training positions used in this work (chosen to 
mostly cover the expected workspace of a prosthesis), the 
optimal number of position subgroupings was four, although 
two was shown to be similar, and more clinically desirable. 

V. CONCLUSION 
In this work, the effect of variation in the limb position 

on the performance of pattern recognition was analyzed 
through investigation of its effect on EMG feature space. By 
using the repeatability and separability indices, it was shown 
how training the classifier in multiple positions reduces the 
position effect and that there is an optimum number of 
training positions to gain the maximum benefit. Since 
training in multiple positions imposes an extensive training 
session for the amputee, it is suggested that considerable 
benefit can be gained by training the classifier using only 
two limb positions. It was demonstrated that these two 
positions are ideally comprised of one in which the arm is 
straight and another in which the arm is bent at the elbow. It 
was also shown how the position effect can be reduced by 
using a dual-stage classification scheme that identifies the 
limb position first, and then selects position-specific 
classifiers. Finally, a hybrid classification scheme in which 
multiple position-specific classifiers were each trained using 
data from multiple positions was shown to outperform 
previous methods, minimizing the position effect by 
exploiting a trade-off between repeatability and separability 
of the data. 
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