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Abstract— Lempel-Ziv Complexity (LZC) has been demon-
strated to be a powerful complexity measure in several biomed-
ical applications. During sleep, it is still not clear how many
samples are required to ensure robustness of its estimate when
computed on beat-to-beat interval series (RR). The aims of
this study were: i) evaluation of the number of necessary
samples in different sleep stages for a reliable estimation
of LZC; ii) evaluation of the LZC when considering inter-
subject variability; and iii) comparison between LZC and
Sample Entropy (SampEn). Both synthetic and real data were
employed. In particular, synthetic RR signals were generated
by means of AR models fitted on real data.

The minimum number of samples required by LZC for
having no changes in its average value, for both NREM and
REM sleep periods, was 104 (p<0.01) when using a binary
quantization. However, LZC can be computed with N >1000
when a tolerance of 5% is considered satisfying.

The influence of the inter-subject variability on the LZC was
first assessed on model generated data confirming what found
(>104; p<0.01) for both NREM and REM stage. However,
on real data, without differentiate between sleep stages, the
minimum number of samples required was 1.8×104.

The linear correlation between LZC and SampEn was
computed on a synthetic dataset. We obtained a correlation
higher than 0.75 (p<0.01) when considering sleep stages sep-
arately, and higher than 0.90 (p<0.01) when stages were not
differentiated.

Summarizing, we suggest to use LZC with the binary
quantization and at least 1000 samples when a variation smaller
than 5% is considered satisfying, or at least 104 for maximal
accuracy. The use of more than 2 levels of quantization is not
recommended.

I. INTRODUCTION

The Lempel-Ziv Complexity (LZC) for sequences of finite
length was proposed by Lempel and Ziv [1] and represents
a simple way to measure signal complexity. The variation
in complexity of physiological signals has shown to be
sensitive to pathological condition in different studies. LZC
has been used on electroencephalograms (EEG) to discrim-
inate between wake and sleep conditions in patients under
anaesthesia [2] and to compare the EEG background activity
in subjects with or without Alzheimer’s Disease [3]. Even
the complexity of the Autonomic Nervous System (ANS) has
been investigated through the computation of this parameter
on heart rate variability (HRV) signals. In fact, there are
studies that showed how changes in complexity can be
referred to ventricular tachycardia and fibrillation [4], or to
changes in mood state [5], or how the control of the ANS
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Fig. 1. Squared magnitude of the frequency response of two AR models
during REM (bold line) and NREM (light line) sleep stage respectively.

is modified in pathological conditions, like heart failure or
sleep apnoea [6].

Despite to its proven capability, what LZC can really
measure on biomedical signals is still unclear. Aboy et al.
[7] showed that LZC (when using binary quantization) is
dependent on some frequency-related quantities. However, in
their simulations, LZC was computed on running window of
10s, totally neglecting the influence of the number of samples
and long-term non stationarities on the estimate. To move a
step forward, we planned a few synthetic simulations and real
data analysis to verify which minimum number of samples
should be employed for obtaining a robust estimate on HRV
signals expressed as RR series. Moreover, we compared
LZC with another complexity measure, i.e. SampEn, in order
to assess at which extend they are related. We focused
our efforts on RR series extracted during sleep because of
its optimal signal-to-noise ratio. However, the RR series
during sleep can vary significantly with the different sleep
stages [8]. For this reason we considered three sleep stages
(according to standard sleep labeling [9], [10]): Light Sleep
(LS), represented by NREM stage 1 and 2; Deep Sleep
(DS), represented by NREM stage 3 and 4; and Rapid-Eye
Movements (REM).

Summarizing, the aims of the study were three: i) evalua-
tion of LZC in terms of samples and number of quantization
levels; ii) evaluation of LZC when considering inter-subject
variability; and iii) comparison of LZC and SampEn.

II. METHODS

A. Dataset

A portion of “The Cyclic Alternating Pattern (CAP) of
EEG activity during sleep” dataset [11], [12] was employed
in this study. In particular, 13 out of 16 healthy individuals
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Fig. 2. Mean and standard deviation of LZC as function of the series length N when considering mNREM (light line) and mREM (bold line) and with
levels of quantization L = 2 (a), L = 3 (b) and L = 4 (c). ∗ on the horizontal bars refer to the statistical difference in the average estimation between
successive series lengths N , and ∗ on the top are used to denote the statistical difference between mNREM and mREM. ∗ refers to p<0.01 of double-tail
t-test.

were selected for the following analysis (3 subjects were
removed due to the low quality or absence of the ECG).

The ECG was collected for each subject during sleep.
Such recordings were used to extract RR series. The sleep
stage annotation series was provided with the dataset and
employed for segmenting sleep stages.

B. Simulations

1) Evaluation of the series length: The assessment of the
number of the samples required by LZC was performed on
synthetic series generated by AR models. In particular, two
AR models, during NREM (mNREM) and REM (mREM)
respectively, were estimated from real data and used for gen-
erating synthetic signals. During sleep, the frequency content
of RR series varies as function of the sleep stage. Generally,
the interaction of ANS is reflected on a predominant power in
the low frequency band during REM, and in high frequencies
during NREM. Figure 1 shows the squared magnitude of the
frequency response of both models. LZC was evaluated on a
synthetic dataset composed by 30 independent realizations
of the AR process (during REM or NREM) after being
quantized with either 2, 3 or 4 levels L (see sec. II-E). The
series length N was set to 10, 102, 103, 104 and 105 samples.

The evaluation of the number of samples was carried
by two procedures. First, the percentage of variation (ab-
solute value), with respect to the average value at 105,
was computed and the number of samples for having lesser
than a prefixed threshold of variation (either 1% or 5%)
was found by linear interpolation. Second, a statistical test
(double-tail t-test) was employed to compare the average
LZC between successive values of N (e.g. 10 vs 102, 102

vs 103, etc.). Moreover, mean values of LZC for mNREM
were compared with those for mREM to evaluate whether it
can distinguish the two populations even before reaching the
minimum percentage of variation (double-tail t-test).

2) Inter-subject variability of LZC: The inter-subject vari-
ability of LZC was evaluated as function of the series
length N . To do that, a specific synthetic dataset was
built employing the AR models identified on real series
(see sec. II-D). In details, 30 independent realizations were

generated for each model selecting an increasing number of
samples, and the average LZC value was computed. The
percentage of variation was calculated respect to the LZC
value computed when the maximum number of samples was
employed. In such analysis, we considered LS, DS and REM
stages separately. The statistical analysis of sec. II-B.1 were
performed (excluding comparison between sleep stages).

3) Relationship between LZC and SampEn: The relation-
ship between LZC and SampEn was evaluated on a synthetic
dataset (30 independent realizations) generated by the same
AR models of sec II-B.2. LZC was computed on series
with a length of 2.3×104. SampEn was determined by the
procedure described in [13] in which its theoretical value,
i.e. the value when N → ∞, was computed analytically
knowing the coefficients of the AR model. The parameters
of SampEn, i.e. m and r, were set to 1 and 0.2 (after power
normalization) respectively. The linear correlation between
LZC and SampEn was computed considering: i) groups LS,
DS and REM separately; and ii) no groups. It is worth noting
that LZC and SampEn were computed on different dataset
because we were interested in the average correlation, not
dependent on the specific realization.

C. Real data analysis

Each RR series was first preprocessed (sec. II-D), quan-
tized (sec. II-E) and then, LZC was computed on windows
with an increasing length, up to reaching a maximum value
of 2.3×104 samples. The standard deviation of LZC, after
subtraction of LZC computed at 2.3×104, was employed for
assessing the variability at each series length N .

The number of samples for having a reduction of factor
10 of the standard deviation with respect to that at N=1000
was considered acceptable as a robust estimate of LZC.

D. Preprocessing and data modelling

AR models of fixed order 9 [6] were fitted on consecutive
windows of 400 RR samples (overlap 0%) previously edited
for artifact elimination. Each real RR series was high pass
filtered by means of a median filter of 200 samples and
afterwards, those RR intervals outside 3 times the interquar-
tile range were removed from the series. Model fitting was
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Fig. 3. Inter-subject variability of LZC. Simulated data: mean and standard deviation of LZC (along models) as function of the series length N is reported
in the first two panels when considering L=2 (a) and L=3 (b). Real data: mean and standard deviation of LZC (along subjects) as function of the series
length N is reported in panel (c). ∆LZC=LZC(N)-LZC(2.3×104). ∗ refers p<0.01 of a non-paired double-tail t-test evaluated on consecutive N values.

performed separately for each subjects within a specific sleep
stage employing the Yule-Walker equations. Those models
which obtained a prediction error variance higher than 0.05
s2 were excluded from the following analysis. A variable
number of models was thus available depending on subject
and sleep stage (272 LS, 219 DS and 169 REM).

E. Series quantization

The quantization was performed by dividing the amplitude
of each RR series in intervals and labeling them with a dif-
ferent symbol. A binary quantization is normally employed
in the computation of LZC and the median value of the
series is used as the quantization threshold whose divides
the series distribution at half [7], [3]. When more than two
levels were required, intervals were built using percentiles
(being maximum and minimum value of the series too
much dependent on artifacts). Each interval was defined by
percentiles equally far from each other, i.e. intervals having
the same probability. For example, when setting L=2 the
median value was used as threshold, with L=3 the 33th and
the 66th percentiles were employed, and so on.

III. RESULTS

A. Simulations

1) Evaluation of the series length: The number of neces-
sary samples required by LZC, i.e. for having no statistical
significant changes in its average value, was evaluated for
two AR models (mNREM and mREM). In particular, when
considering mNREM, the 1% of variation was reached when
N was 9300 with L=2 (1000 at 5%), 52000 with L=3 (5500
at 5%) and 66100 with L=4 (6800 at 5%). Similar results
were obtained when considering mREM (at 1%: 53500 with
L=2, 45300 with L=3 and 64900 with L=4; at 5%: 3900
with L=2, 3500 with L=3 and 6300 with L=4). However,
the mean value of LZC at N=104 was not different to that
at N=105 only when considering L=2 for both models (fig.
2; p<0.01).

2) Inter-subject variability of LZC: The influence of the
inter-subject variability on LZC was evaluated. The max-
imum number of samples required by LZC for having the
1% of variation was 3500 with L=2 and 9000 for L=3 (1100

with L=2 and 1700 with L=3 at 5%). However, even in this
case, only for L=2 and when employing more than 104, mean
values of LZC were not distinguishable (fig. 3a and fig. 3b;
p<0.01).

3) Relationship between LZC and SampEn: The relation-
ship between LZC and SampEn was evaluted for LS, DP and
REM after separate grouping (fig. 4) and when no groups
were considered. In the first case, the linear correlation
was always higher than 0.75 (p<0.01). In particular, when
considering LS and REM with L=2, the correlation was
higher than 0.90. In the second case, the linear correlation
was higher than 0.90 (p<0.01) for both L=2 and L=3 (the
sample was not balanced). Table I summarizes the relations
and the correlations found.

TABLE I
THE LINEAR RELATIONSHIP BETWEEN LZC AND SAMPEN (ALL) IS

SHOWN. ALSO, RELATIONS ARE REPORTED AS FUNCTION OF THE SLEEP

STAGE AND THE LEVEL OF QUANTIZATION L. LINEAR CORRELATION IS

SHOWN IN BRACKETS (∗ REFERS TO p <0.01).

Sleep stage L=2 L=3
LS 2.20×LZC + 0.52 (0.92 *) 2.17×LZC + 0.38 (0.93 *)
DS 1.52×LZC + 1.02 (0.75 *) 1.65×LZC + 0.81 (0.81 *)
REM 2.25×LZC + 0.44 (0.97 *) 2.26×LZC + 0.28 (0.98 *)
ALL 2.20×LZC + 0.52 (0.90 *) 2.21×LZC + 0.35 (0.93 *)

B. Real data

LZC and its variability were computed on windows with
different series length N (fig. 3c). For both L=2 and L=3,
the minimum number of samples for having a reduction of
factor 10 of the standard deviation with respect to that at
N=1000 was 18000.

IV. CONCLUSIONS

In this work, we verified how many samples are required to
ensure robustness of LZC estimation when used to measure
the complexity of beat-to-beat series. We also assessed the
influence of the inter-subject variability when computing
LZC. Secondarily, we estimated the linear correlation be-
tween LZC and SampEn.
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Fig. 4. Scatter plot and linear regression between LZC and SampEn when considering LS (a), DS (b) and REM (c) with L=2 (gray) and L=3 (black).

During a specific sleep stage, the minimum number of
samples required by LZC, i.e. for having no changes in its
average value, is 104 (practically impossible to collect for a
single sleep stage) when employing binary quantization (fig.
2; p<0.01). Such result is still valid considering the inter-
subject variability (fig. 3a and fig. 3b; p<0.01). However, a
variation smaller than 5% was found when employing N >
1000 for both L=2 and L=3.

A number of quatization levels higher than 2 is not
recommended because more than 105 samples are required
(fig. 2). It remains to accurately evaluate whether LZC
can discriminate between NREM and REM even before
convergence (partially demonstrated; fig. 2; p<0.01) and, if
its value reflects physiological information.

Furthermore, the quantization method employed converts
the RR distribution, whatever it was, into a uniform distri-
bution of symbols. Such method overestimates the number
of samples required when L > 2. The study of which
quantization technique should be used, as a function of the
specific application, was postponed for future works.

On real data, due to the presence of non-stationaries, a
proper evaluation of the number of samples required by LZC
during sleep is not feasible. However, the cyclicity of sleep
stages during the night leads to a reduction of the variability
of the LZC when increasing the number of samples making
possible an empirical evaluation.

Finally, the linear correlation between LZC and SampEn
was assessed on a synthetic dataset (tab. I and fig. 4, >0.90;
p<0.01). However, the quantization procedure was not the
same employed for LZC (standard parameter were consid-
ered for SampEn). Such comparison was meant to evaluate
whether the two measures carry different information. From
our results, it seems to be excluded. Therefore, when LZC
is required on short series, the methodology proposed by
Aktaruzzaman and Sassi [13] could overcome such issue.
This result suggests to verify which of these two measures
converges more rapidly when long series are available.

Summarizing, we suggest to use LZC with the binary
quantization and at least 1000 samples when a variation
smaller than 5% is considered satisfying, or at least 104

for maximal accuracy. The use of more than 2 levels of
quantization is not recommended.
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Analysis of EEG background activity in alzheimer’s disease patients
with LempelZiv complexity and central tendency measure. Med Eng
Phys, 28(4):315–322, 2006.

[4] X. S. Zhang, Y. S. Zhu, N. V. Thakor, and Z. Z. Wang. Detecting
ventricular tachycardia and fibrillation by complexity measure. IEEE
Trans Biomed Eng, 46(5):548–555, 1999.

[5] M. Migliorini, M. O. Mendez, and A. M. Bianchi. Study of heart rate
variability in bipolar disorder: linear and non-linear parameters during
sleep. Front Neuroeng, 4(22):1–7, 2012.

[6] A. M. Bianchi, M. O. Mendez, M. Ferrario, L. Ferini-Strambi, and
S. Cerutti. Long-term correlations and complexity analysis of the heart
rate variability signal during sleep: Comparing normal and pathologic
subjects. Methods Inf Med, 49(5):479–483, 2010.

[7] M. Aboy, R. Hornero, D. Abásolo, and D. Álvarez. Interpretation of
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