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Abstract— 3D stereophotography is rapidly being adopted by
medical researchers for analysis of facial forms and features.
An essential step for many applications using 3D face data
is to first crop the head and face from the raw images.
The goal of this paper is to develop a reliable automatic
methodology for extracting the face from raw data with texture
acquired from a stereo imaging system, based on the medical
researchers’ specific requirements. We present an automated
process, including eye and nose estimation, face detection,
Procrustes analysis and final noise removal to crop out the faces
and normalize them. The proposed method shows very reliable
results on several datasets, including a normal adult dataset
and a very challenging dataset consisting of infants with cleft
lip and palate.

I. INTRODUCTION

With the rapid development of 3D imaging technology,
there is widespread use of 3D face information for re-
search and applications, such as precise human detection
and identification. Because the capture of 3D facial form
for people with medical conditions has become a practical
reality, much research has been done using computer-based
automatic methods to study 3D face characteristics with
diseases such as autism [1], plagiocephaly [2], 22q11.2
deletion syndrome [3] and cleft lip and palate [4]. Most
methods require the data to be preprocessed, which means
the face and head data are cropped from the background, so
that the shape descriptors can be applied only on the region
of interests. However, this step is usually done manually.

Our collaborators from Seattle Children’s Hospital capture
3D images of patients using the 5-pod 3dMDcranial sys-
tem [5]. After acquisition of the data, the clinicians analyze
3D characteristics of the face, including manually landmark-
ing the data, completing some craniofacial anthropometric
measurements, and evaluating the data. For all of those tasks,
they want the data to be cleaned in a specific way, so that
clothing, body under the neck, and other noise are removed,
the face, forehead and front part of skull are integral, and
the ears are kept. These requirements are very specific and
different from most 3D face recognition applications, in
which only the face (from eyebrow to chin) is extracted,
so that the existing methods for 3D face extraction are not
suitable for this purpose [6].

In this paper, we present a system that takes the raw
data captured by the 5-pod 3dMDcranial system as an
input, automatically detects the face, and extracts it to meet
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(a) Texture image from 5 cameras (b) Mesh data

Fig. 1: Raw data. (a) The texture image from 5 different
cameras on left, right, front, back and top. (b) The 3D mesh
composed of vertices and triangular connections.

the clinicians’ requirements. Four steps, including curvature
classification, face detection, Procrustes analysis and surface
normal and color thresholding, are investigated to ensure that
the face, including the forehead and ears, is extracted from
the whole noisy, raw image.

The rest of the paper is organized as follows: section II
describes the dataset used to develop and test the system. In
section III, the whole system is explained in detail. Section
IV shows the experimental results of our work.

II. DATA FORMAT AND DATASETS

Our cleft dataset consists of 3D craniofacial surface
meshes obtained from the 5-pod 3dMDcranial imaging sys-
tem. Each 3D image is composed of two parts: the 3D mesh
part and the texture part. The mesh part is a point cloud with
connections between the points, as shown in Fig. 1(b). The
texture part is composed of RGB images, viewed from 4 to
5 perspectives, as in Fig. 1(a). The two parts are connected
by the texture coordinates, which are associated with every
vertex in the mesh data and XY pixel positions in the RGB
image.

There are three datasets in our study. One contains normal
adults, with 21 scans from 10 individuals. The second one
contains 64 meshes from 52 infants with unrepaired cleft
lip. The last one consists of 35 meshes from 35 infants with
repaired cleft lip. The latter two are extremely challenging,
because these infants are too young to sit unsupported and
need to be held by an adult or a positioning device. Although
it is suggested that the subjects should face one of the
cameras and have a relaxed expression when the scan is
taken, the orientation and expression of infants are hard to
control and the data can be very noisy.
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(a) Original data (b) Front faced (c) Detected face

(d) Procrustes (e) Cleaned data (f) Side view

Fig. 2: System design for automatically face extraction. (a)
Original 3D mesh with texture. (b) Face rotated to a frontal
position. (c) Face detected with 0 degree of rotation. (d)
Procrustes aligned face with landmarks. (e) Front view of
the cleaned data, the forehead and the front part of the skull
are kept. (f) Side view of the cleaned data with the ears kept.

III. METHOD

A. System Design

Our system is built for automatically cleaning the raw data
and normalizing the 3D faces. With an input of 3D textured
mesh data, our system first performs eye and nose region
detection based on a machine learning technique and rotates
the mesh so that the face is forward. Then, a face detection
algorithm is used on the screenshot of the 3D mesh to detect
the human face and a set of landmarks. After that, Procrustes
alignment is applied to normalize the data so that a standard
box can be used to cut the data uniformly. Last, some final
cleaning methods are employed to further improve the data.
Figure 2 illustrates the steps of our system.

B. Eyes and Nose Tip Detection on Mesh

There are already some successful face recognition al-
gorithms for 2D photos. In our dataset, the input contains
both the reconstructed 3D mesh and 2D photos from several
cameras. However, when capturing these photos, it is hard
for the photographer to control the postures of the infants,
so it is not guaranteed that one of the cameras will capture a
good presentation of the face. Therefore, instead of applying
a face recognition algorithm directly onto the photos taken
by cameras, our first step is to ensure that the data is rotated
to a suitable angle, so that the advantage of already existing
and evaluated face recognition algorithms for 2D photos can
be enhanced.

Our system uses three steps to rotate the 3D mesh and
construct a frontal face screenshot for subsequent processes.
The first step is to form a feature vector composed of a
multiple-scale histogram of single-valued, low-level features.
Next, two classifiers, one for inner eye corners and one for

(a) Shape index (b) Curvedness (c)Besl-Jain

Fig. 3: Local properties of the surface points. (a) The shape
index of surface. Green means low and blue means high in
shape index. (b)The curvedness of each point on one mesh.
High curvedness is shown in red and low in green. (c) The
Besl-Jain surface value on the surface. Blue means plane
surface, dark purple means peak, light purple means pit, cyan
means saddle ridge.

nose tip, are trained and the candidate points for eye and
nose are selected. The third step is to select possible eye-
nose triangle regions and rotate the data.

Our methodology starts by applying a low-level operator
to every point on the surface mesh. The low-level features
were first introduced for finding the symmetry plane of the
face in [7] and are described here for convenience. The low-
level operators extract local properties of the surface points
by computing a single feature value vi for every point pi
on the mesh surface. In this work, shape index, curvedness
and Besl-Jain curvature value are used for our experiments.
Figure. 3 (a), (b) and (c) show examples of the shape index,
curvedness and Besl-Jain curvature values of a 3D model,
respectively.

Next, instead of just using one value for a point pi, a
local histogram is used to aggregate the low-level feature
values of each point. The histograms with multiple sizes of
neighborhoods are combined together to form a large feature
vector. Note that the three single-valued low-level features
and the multiple scale histogram are all rotation invariant.
This ensures that the eye and nose candidates can be selected
despite the rotation of the original data.

After that, we chose to teach a classifier the character-
istics of points that are the inner eye corner and nose tip
because they are reliably detected. Histograms of low-level
features were used to train a Support Vector Machine (SVM)
classifier [8] to learn these three points on the 3D surface
mesh. We used the SVM implemented in WEKA for our
experiments [9]. The training data for supervised learning
for the classifiers was obtained by manually marking eye
and nose points on the surface of each training object. The
histogram of low-level features of each of the marked points
was saved and used for the training.

A small training set, consisting of 40 head meshes was
used to train the classifier to learn the characteristics of the
eye or nose points in terms of the histograms of their low-
level features. After training is complete, the classifier is able
to label each of the points of any 3D object as either inner eye
corner or nose or neither and provides a confidence score for
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its decision. A threshold T is applied to the confidence scores
for the inner eye conner or nose tip. In our experiments, we
used T = 0.98 to keep only the points with high confidence
scores from the classifiers.

Although the classifiers for eye and nose were very pow-
erful, there were still false positive regions in the predicted
results. We developed a systematic way to find the eye-
nose-eye triangle area. First, the candidate points from both
classifiers are grouped to form regions. Second, small regions
(< 50 points) are removed. Third, a pair of eye regions that
have a similar number of points, along with a nose region
that lies almost equidistant from those two eye regions are
picked. Last, some geometric thresholds are used to rule out
regions that are too small or too big.

After the eye-nose-eye region is determined, the head is
rotated so that the eye regions are leveled and symmetric and
the nose appears to be right underneath the eye center. This
produced a frontal face screenshot for the subsequent steps.

C. 2D Face Detection

The problem of finding and analyzing faces from 2D im-
ages is a foundational task in computer vision and there are
multiple existing techniques. In Zhu’s work [10], the tasks
of face detection, pose estimation and landmark estimation
are jointly addressed by a model based on a mixture of
trees with a shared pool of parts. Every facial landmark is
modeled as a part and global mixtures are used to capture
topological changes. This method is applied to our data after
the face is rotated to a frontal position. The results after
this step include: face location, head pose estimation, and
landmarks on the 2D screenshot. Figure 4 illustrates why
the previous rotation step is essential. Because the babies’
pose and expression are very hard to control, if the face
detection method is applied directly to the original photo
without pose normalization, it sometimes leads to a failure
in face detection or even a false positive result. After pose
normalization, when there is a clear frontal face in the image,
the task is much easier for both face detection and landmark
localization algorithm.

D. Face Normalization

Once the frontal face is detected, the 3D landmarks are
calculated by projecting the extracted 2D landmarks on the
screenshot from the previous step. The 3D mesh faces are
then normalized by Procrustes analysis (PA) [11]. In this
step, a random head mesh Dm with landmarks Lm is selected
as the approximate mean shape. Then every head mesh Dj

with landmarks Lj is aligned to the approximate mean shape
by translation, scaling and rotation so that the sum of squared
errors of the landmarks Lj and Lm is minimized. Then a new
mean shape Dm with landmarks Lm is calculated based on
the average of the aligned data. The steps are iterative until
the mean shape is stable and each head mesh is aligned to
the mean.

Figure 5 shows the experimental data of landmarks before
and after Procrustes analysis. The red dots represent the
landmarks Lm. Before Procrustes analysis, the green dots

(a) Face detection (b) Face detection on
on the original data the screenshot

Fig. 4: Same face detection algorithm applied to original data
and screenshot after face rotation. The number 0 appears on
the image means frontal face position. (a) shows the pose
estimation is not true and the landmarks are not properly
located if the face detection algorithm is applied directly to
the original photo. (b) returns a true positive result, with a
detection of frontal face.

(a) Landmarks before PA (b) Landmarks after PA

Fig. 5: Landmarks before and after procrustes analysis.

in Fig 5 (a) are all scattered, while the blue dots in Fig 5 (b)
shows the landmarks after the Procrustes analysis gathered
around the mean landmarks Lm.

E. Final Cleanup

Because all the data are normalized to the same scale
and rotation, a standard bounding box is used to cut the
data and meet the requirements for keeping the ears and
forehead area, as shown in Fig. 6(a). For an adult, this
standard bounding box is adequate to separate the face from
other parts because adults tend to have a long neck. However,
for children especially young babies, there is still clothing
or other noise under the chin area due to the shortness
of their necks. Some additional cleanup steps, including
surface normal thresholding and color thresholding, are used
to remove this noise. For every point in the bounding box
pi, the surface normal vector is calculated, with Nxi, Nyi
and Nzi as the normal vector projection in x, y and z axis
respectively. The larger Nyi is, the more the surface around
point pi is facing up. Figure 6 (c) shows the normal value
in the y direction. Considering the points around the lower
jaw and chin are all facing downward and the points in the
clothing and shoulders are facing up, a threshold TNy is used
to differentiate the shoulder and chest from the face. Another
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(a) Bounding box (b) After cleanup (c) Ny values

(d) The hue value (e) Bounding box (f) After cleanup

Fig. 6: Final cleanup. (a) Cut by a standard boundary box.
(b) Cleaned by using normal and color thresholds. (c) The
surface normal value in the y direction, red means the surface
normal is pointing up, and green means facing down. (d) The
hue value for the face. A thresholds was chosen for cleaning
the noise underneath the chin. (e) (f) Another example before
and after final cleanup.

threshold is used in color space. The colors of the points are
converted from RGB space to HSV space; the hue values for
every point in the bounding box are illustrated in Fig. 6 (d).
The average hue value for the cheek area is calculated. Any
point with a large difference from the average hue value in
the cheek area is removed. Figure 6(b) shows that after these
two cleanup steps, the clothing and noise under the chin are
all removed.

IV. EXPERIMENTS AND RESULTS

For our experiments, we use the WEKA [9] implementa-
tion of the SVM classifier in the eye and nose detection step.
This step is considered accurate when the eye-nose triangle is
detected correctly and the face is rotated to a frontal position.
This step achieves 100% accuracy in the normal dataset,
94% in the unrepaired cleft dataset and 97% in the repaired
cleft dataset. For the images in which the classifier failed in
detecting eye-nose regions, the face is rotated manually to
face forward for latter processes.

The software provided by Zhu [10] was used for face
detection on the screenshot produced by the previous step.
This algorithm is extremely successful when the input is a
frontal face, achieving 100% in the face detection task with
all three datasets. After Procrustes analysis and normalizing
all the detected faces, the standard box successfully keeps
the face, forehead, front part of the skull and ears for all the
data from normal, unrepaired and repaired cleft lip data.

In the last step of removing the clothes, chest and shoulder
areas under the chin, in order to avoid over cropping, we
chose the threshold to be very relaxed to ensure that the
chin is well maintained. We found there are 6% and 9% with
very small amount of clothes or skin in the chest remaining

TABLE I: Accuracy for Each Step in the Process

Dataset normal unrepaired cleft repaired cleft
number of instances 21 64 35

eyes and nose detection 21 (100%) 60 (94%) 34 (97%)
face detection 21 (100%) 64 (100%) 35 (100%)

ear and forehead 21 (100%) 64 (100%) 35 (100%)
no clothes left 21 (100%) 60 (94%) 32 (91%)

underneath the chin for babies with cleft lip in the datasets
before and after surgery, respectively, as show in Table I.

V. CONCLUSION

This paper introduces a system to crop out the face from
3D textured mesh data in infants as young as 3 months
old and in adults to meet the requirements of medical
researchers. The system takes a 3D mesh, detects the inner
eye corners and the nose tip, rotates the data and saves
a screenshot. Then the screenshot is analyzed by a 2D
face detection and landmark estimation algorithm. After the
landmarks are obtained, the data are normalized, allowing
for a standard boundary crop. Finally, the surface normal and
color are used to threshold some noise underneath the chin
area. The results on normal and challenging patient datasets
show that the whole process is very reliable. It detects the
face and maintains the face area, the forehead, the ears and
the front part of the skull with a 100% rate of success.
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