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Abstract— Computational and machine learning techniques 

have been applied in identifying biomarkers and constructing 

predictive models for diagnosis of hypertension. Strategies such 

as improved classification rules based on decision trees have 

been proposed. Other techniques such as Fuzzy Expert Systems 

(FES) and Neuro-Fuzzy Systems (NFS) have recently been 

applied. However, these methods lack the ability to detect 

temporal relationships among biomarker genes that will aid 

better understanding of the mechanism of hypertension disease. 

In this paper we apply a proposed two-stage bio-network 

construction approach that combines the power and 

computational efficiency of classification methods with the well-

established predictive ability of Dynamic Bayesian Network. 

We demonstrate our method using the analysis of male young-

onset hypertension microarray dataset. Four key genes were 

identified by the Least Angle Shrinkage and Selection Operator 

(LASSO) and three Support Vector Machine Recursive Feature 

Elimination (SVM-RFE) methods. Results show that cell 

regulation FOXQ1 may inhibit the expression of 

focusyltransferase-6 (FUT6) and that ABCG1 ATP-binding 

cassette sub-family G may also play inhibitory role against 

NR2E3 nuclear receptor sub-family 2 and CGB2 Chromatin 

Gonadotrophin. 

 

I. INTRODUCTION 

Nearly one out of three adults in the United States have 
hypertension and an estimated $47.5 Billion is spent on the 
disease each year [1]. Hypertension or high blood pressure is 
defined as systolic or diastolic blood pressure greater than or 
equal to 140mmHg and 90mmHg, respectively. Called a 
silent killer because it has no symptoms, hypertension is one 
of the major risk factors for developing heart disease. With 
risk factors such as smoking, alcohol and obesity, an 
estimated 32% of men and 29% of women in England have 
hypertension or have been treated of it [2]. In line with 
technological advances in the post-genome era, complex and 
high dimensional proteomic and gene expression profiles 
have been extracted and computational approaches to 
analyze and discover potential key biomarkers and 
relationships among genes is therefore necessary to 
understand the disease mechanism. 

Various computational approaches have been proposed 
and applied in recent research on hypertension such as an 
improved C4.5 classification algorithm based on maximal 
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information for identification of key hypertension 
biomarkers [3], Fuzzy Expert Systems (FES) and Neuro-
Fuzzy Systems (NFS) for the diagnosis of hypertension [4] 
with a conclusion that NFS was more appropriate than FES. 
These methods are only able to analyze classification 
performance and perform “black-box” knowledge 
representation (NFS) but are not able to model temporal 
relationship among hypertension genes and key potential 
biomarkers for hypertension diagnosis. 

This study therefore aims to investigate temporal 
association of high quality hypertension genes and discover 
potential time dependent biomarkers across two time points 
using a proposed two-stage computational approach [5]. At 
the first stage feature selection and classification are carried 
out using five different methods. High quality features based 
on best classification performance are selected. At the 
second stage,  Dynamic Bayesian Network is used to model 
temporal associations across two time points of significant 
arcs. This promising hybrid method is discussed in the 
following sections in detail.  

II. METHODS AND MATERIALS 

A. Feature Selection and Classification  

In high-dimensional settings, feature selection helps to 
select the most important features in order to reduce their 
number, avoid over-fitting and at the same time, retain best 
class discriminatory information as much as possible.  

There are many methods for feature selection widely 
practiced which can be grouped into three main techniques 
namely filter, wrapper and embedded techniques [6]. In this 
study, five wrapper feature selection techniques will be used 
as the wrapper-based methods provide information about 
interaction between the features selected, which generally 
select high-quality feature subsets. 

i. Support Vector Machine Recursive Feature Elimination 

(SVM-RFE) 

  The SVM-RFE was used for selecting predictors 
relevant to cancer classification problem [7]. The method 
generates the ranking of features based on backward feature 
elimination by training a SVM. In this study, we considered 
the three popular kernels of the SVM: linear (SVM-RFE-L), 
Non-Linear (SVM-RFE-NL) and Gaussian radial basis 
function kernels of the SVM-RFE algorithm (SVM-RFE-
RBF). For classification problems, SVM involves the 
minimization of the error function  
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where C is the capacity constant, w is the vector of 
coefficients, b is a constant and ξi represents parameters for 
handling non-separable data inputs.  

 ii. Random Forest Recursive Feature Elimination (RF-
RFE) 

The random forest method generates many trees using the 
idea of bagging in tandem with random feature selection and 
computes the ensemble of trees using 
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where M represents different trees to be trained on different 
subsets of data chosen at random and fm is the m’th tree.  The 
feature to split in each node in the tree is selected as the best 
among a set of randomly selected features. After generating a 
large number of trees, the most popular class in the trees is 
selected [8]. Recursive elimination is carried out by 
successively eliminating the least important variable based 
on decreased classification accuracy.  

iii. Least Angle Shrinkage and Selection Operator (LASSO) 

The lasso is an efficient regularization method to 
improve prediction performance and prevent over-fitting. It 
performs shrinkage and continuous subset selection for linear 
and logistic regression via an L1-norm regularization penalty. 
The objective function is to minimize the sum of squared 
errors with a bound on the sum of absolute values of the 
coefficients [9]. The lasso estimate is defined by the 
maximum likelihood 
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  is the L1 lasso penalty and s is the standardized 

tuning parameter that determines the amount of shrinkage. 

B. Dynamic Bayesian Network (DBN) 

 Bayesian Networks (BN) are directed acyclic graphs 
(DAG) having nodes that represent random variables [10]. 
Each node xi has a conditional probability distribution 
p(xi|parents(xi)) with its parent nodes and the joint 
probability distribution of all nodes given by: 
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 Dynamic Bayesian Networks (DBNs) are Bayesian 
Networks that aid modeling of associations arising from 
temporal dynamics in time between features of interest which 

otherwise cannot be performed using static Bayesian 
Network. It was proven in [11] that in modeling a DBN, arcs 
defining dependence relationships among variables of 
successive time points can be represented when a vector 
auto-regressive process (VAR) model of order 1 (VAR(1)) is 
assumed. Hence, a DBN can be expressed as 

( ) ( 1) ( )t t tX X                          (5) 

where ϕ is a k×k transition matrix that expresses the 

dependence of X(t) on X(t-1). ω(t) is the vector white noise 
process assumed to be multivariate normal with mean zero 
and covariance matrix Ε{ω(t),ω(t)'}= ∑ω. The stochastic 
transition model for the process is of first-order Markovian. 
For all time points t > 0, the random variables X(t) = 
(X1(t),…,Xi(t),…,Xk(t)) observed at time t are conditionally 
independent given the random variables X(t-1) at previous 
time t-1. This implies that at any time point, simultaneously 
observed variables are conditionally independent given their 
immediate past. Hence a VAR(1) process whose covariance 
matrix ∑ω is diagonal can be represented as a DBN where the 
arcs of the DBN model are identified by the non-zero 

elements of the matrix ϕ. 

DBNs are used to represent directed graphical stochastic 
models of dynamical systems that are problem specific. 
Variants of the Hidden Markov Models (HMMs), which are 
tools that can represent probability distributions over 
sequence of observations, can be considered to be DBNs 
[12]. HMMs, which can be seen as special cases of DBNs, 
are ubiquitous for modeling time series data where they are 
used to encode structures that are implied and not fully 
expressed in a DBN [13]. This allows modelling of temporal 
feedback loops that are common in biological pathways, 
where parent genes inhibit or slow down the expression and 
chemical reaction of child genes [11, 14].   

  Different shrinkage algorithms for learning and inference 
of DBN models for biological pathways using regularized 
estimators are studied in [14]. In this paper, we applied the 
G1DBN algorithm [11, 14] for DBN modelling in order to 
determine significant temporal relationships among features 
that yield high accuracies selected by the feature selection 
methods.   

III. RESULTS AND DISCUSSION 

The hypertension pre-processed dataset was obtained 
from [15].  It contained gene expression profiles of male 
young-onset hypertension with age range of 20-50 years. The 
microarray chip contained 39,200 polynucleotide data, of 
which 22,184 were mapped to the human genome. There 
were 77 cases of male young-onset (age 37.6 ± 7.2) 
hypertensive and 82 male normotensive controls (age 36.9 ± 
6.6). These make up a total of 159 observations and 22,184 
predictor genes used in this study. To be able to determine 
relevant temporal interaction among the hypertension genes, 
feature selection was first carried out using five different 
methods in order to select best features with the highest class 
discriminatory information. For all the selection methods, a 
10-fold cross validation was performed and their 
performances were averaged. We used popular performance 
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criteria which are sensitivity, specificity, accuracy, standard 
deviation of accuracy (Std.Acc), false positive rate (Type 1 
Error), Balanced Classification Rate (BCR), F1-score and 
Matthew’s Correlation Coefficient (MCC), as shown in 
Table I, to rank the performance of the methods and selected 
features. Mathematical expressions of these measurements 
can be found in [12]. 

There were a total of 101 features selected by the LASSO 
which had non-zero coefficients. The selection was achieved 
using the value of the standardization parameter s obtained 
from 10-fold cross validation. For the SVM-RFE methods, 
cost of constraint violation C was varied between 1 and 10. 
Finally, C=1 that yielded best accuracy was therefore chosen. 
For SVM-RFE NL and SVM-RFE RBF, the best gamma 
value of 0.0000451 corresponding to the inverse of dataset 
dimension was chosen. For SVM-RFE Non-Linear, moderate 
polynomial degree of 3 was used and the best-selected 
features were ranked based on the highest accuracy of 
classifier. The SVM-RFE Linear, SVM-RFE Non-Linear, 
and SVM-RFE Radial selected 137, 45 and 49 best features 
respectively. For the RF-RFE, the experiment was run for 
200, 500 and 1000 iterations each for 1000, 2000 and 5000 
randomly initialized forest trees. 320 top features selected by 
backward elimination on random forests had overall best 
performance. Table 1 shows the results of the best model 
with best performance criteria. 

For modelling the temporal associations of selected features 
using DBN, we considered the features selected by the 
LASSO and SVM-RFE-Linear methods as they yielded 
higher accuracies of 99% and disregarded the feature 
selected by the RF-RFE, SVM-RFE Non-Linear and SVM-
RFE Radial methods which had lower accuracies. 

The Dynamic Bayesian Network for the genes selected by 
the LASSO and SVM-RFE-Linear was modelled using the 
G1DBN algorithm with each observation taken as a time 
point. The G1DBN algorithm performs DBN modelling in 
two main steps.  The first step infers a first order dependence 
score matrix (S1) which contains the score of each edge of 
the DBN. S1 and edge selection threshold alpha1, obtained 
in the first step are used with edge selection threshold alpha2 
in the second step, to infer the score of each edge of a DBN 
describing full order dependencies between successive 
variables. The smallest score refers to the most significant 
edge. In order to obtain optimized DBN, threshold values of 
alpha1 and alpha2 for the two steps are found to be 0.5 and 
0.05, respectively, which were used to prune the edges of the 
DBN model. 

We discovered 351 and 460 directed arcs describing full 
order conditional dependencies among the selected features 
of LASSO and SVM-RFE Linear respectively. The score 
matrices of the discovered arcs ranged from 0.000 to 0.05. 
Fig 1 shows the DBN model of 13 genes selected by the 
LASSO with most significant inferred temporal arcs across 
time points having scores of 0.000. Fig 2 shows the DBN 
model of 15 genes selected by SVM-RFE Linear with most 
significant inferred temporal arcs having scores of 0.000. 
The current meanings of the represented genes were verified 
from Gene Expression Omnibus [17] and genes without gene 
symbols were represented by their UniGene IDs (starting  

TABLE I.  SUMMARY OF BEST PERFORMANCE CRITERIA  

 

 

Performance

Criteria 

Feature Selection Wrapper Methods 

RF-

RFE 

LASSO SVM-

RFE-L 

SVM-

RFE-

NL 

SVM-

RFE-

RBF 

Classifiers 

Decisi

on 

Tree 

L1 Logistic 

Regression 

SVM-L SVM-

NL 

SVM-

RBF 

no. of genes 320 101 137 45 49 

Sensitivity 0.6292 0.9857 0.9889 0.9260 0.9975 

Specificity  0.5854 1.0000 0.9850 0.8470 0.9514 

Accuracy 0.6067 0.9900 0.9900 0.8867 0.9600 

Std.Acc 0.1235 0.0211 0.0281 0.0892 0.0562 

Type 1 Err. 0.4146 0.0139 0.0145 0.1530 0.0486 

BCR 0.6073 0.9923 0.9894 0.8865 0.9595 

F1-Score 0.5965 0.9929 0.9850 0.8949 0.9531 

MCC 0.2164 0.9873 0.9739 0.7800 0.9197 

BCR: The Balanced Classification Rate (Harmonic mean of the Precision and Recall).                                                  

Type 1 Err:  The False Positive Rate (FPR). Std.Acc: The standard deviation of mean accuracy. 

 
 

 

Figure 1.  Dynamic Bayesian Network Model of Hypertension genes 

showing temporal relationships of key features. It is worth noting that the 

green ellipses are features of the predicted parents at time t-1 which inhibit 

the children shown in the pink circles at time t. 

with Hs.) in the diagrams. From Fig 1 results, the human 
transcribed locus gene (Hs.649978) and cell regulation 
FOXQ1 may inhibit the expression of focusyltransferase-6 
(FUT6). The ABCG1 ATP-binding cassette sub-family G 
may also play inhibitory role against NR2E3 nuclear 
receptor sub-family 2 and CGB2 Chromatin Gonadotrophin 
as shown in Fig 2. 

We extracted 22 more significant gene subsets, which were 

picked up in common by the LASSO and the SVM-RFE 

Linear selection methods and inferred their DBN model. Fig 

3 shows the temporal associations of 11 genes with six most 

significant edges of lowest scores. The result show that 

CRABP2 cellular retinoic acid binding protein 2 may be 

highly associated in time with DKK3 dickkopf WNT 

signaling pathway inhibitor 3. 

There were a total of four key genes selected in common 

by the more robust LASSO and the three SVM-RFE methods 

and are shown in Table II. These genes that are consistent  
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TABLE II.  KEY GENES COMMONLY SELECTED BY LASSO 

AND SVM-RFE METHODS 

UniGene ID Symbol Name 

Hs.666652 null Human transcribed locus 

Hs.73839 RNASE3 ribonuclease; RNase A family; 
3 (eosinophil cationic protein) 

Hs.497626 PLXNA2 Human protein-coding gene 
PLXNA2 

Hs.656129 null CDNA FLJ36210 fis, clone 
THYMU2000155 

 

 

Figure 2.  DBN Model of Hypertesion genes showing temporal 

relationship among top genes selected by SVM-RFE Linear method. 

 

Figure 3.  DBN of Hypertension genes showing temporal relationship 

among key features selected by both the LASSO and SVM-RFE Linear 

methods (the green spheres are features of predicted parents at time t-1 

which inhibit features in red circles (children) at time t. 

 

 

across the LASSO and SVM-RFE methods of high 

accuracies might be highly associated with the hypertension 

disease. 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, a hybrid Dynamic Bayesian Network 

modeling and inference made up of five feature selection 

methods and Dynamic Bayesian Network was successfully 

applied to the discovery of possible key biomarkers for the 

diagnosis of hypertension. 

 The results obtained from comprehensive analyses showed 

that the features selected by the LASSO and SVM-RFE 

Linear methods yielded the best predictive performance. 

DBN defining a VAR process of order 1 was used to 

perform inference on temporal relationship of the selected 

subsets from time t to t-1. Significant temporal relationships 

between genes FOXQ1 and FUT6 and between ABCG, 

NR2E3 and CGB2 were also discovered. We also discovered 

that DKK3 dickkopf WNT signaling pathway inhibitor 3 

may be highly associated with CRABP2 cellular retinoic acid 

binding protein 2 in hypertension diagnosis. 

Further examination will be carried out in the databases to 

find out the relationship between the modeled genes and the 

disease in gene expression databases. Other DBN algorithms 

that do not depend on regularized estimators such as Gibbs 

Sampling and Loopy Belief Propagation could also be 

experimented with and results compared. 
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