
  

 

Abstract—Identification of drug candidates is an important 

but also difficult process. Given drug resistance bacteria that 

we face, this process has become more important to identify 

protein candidates that demonstrate antibacterial activity. 

The aim of this study is therefore to develop a bioinformatics 

approach that is more capable of identifying a small but 

effective set of proteins that are expected to show antibacterial 

activity, subsequently to be used as antibiotic drug targets. As 

this is regarded as an imbalanced data classification problem 

due to smaller number of antibiotic drugs available, a hybrid 

classification model was developed and applied to the 

identification of antibiotic drugs. The model was developed by 

taking into account of various statistical models leading to the 

development of six different hybrid models. The best model 

has reached the accuracy of as high as 50% compared to 

earlier study with the accuracy of less than 1% as far as the 

proportion of the candidates identified and actual antibiotics 

in the candidate list is concerned.  

I. INTRODUCTION 

Despite advances in the bio-medical technology that 

further aid understand biological systems, drug discovery is 

still one of the most difficult and long-lasting processes, 

which are not only costly but also with low success rate of 

new therapeutic outcome [1]. In order to address this 

problematic process, computational methods have been 

proposed to identify potential drug targets and candidates 

[2]. For example, interaction between drugs and target 

proteins is predicted in order to identify potential new drugs 

or novel targets for the existing drugs [3]. In addition, there 

have been attempts to discover drug candidates from protein 

sequence information by using computational intelligence 

and statistical predictive methods [4]. Due to smaller 

number of drug target available, this problem can be 

regarded as imbalanced data classification problem. A 

major problem is that a classifier developed with the 

imbalanced data set tends to classify an object to a class 

with the highest number of samples, in which case it is the 

non-drug target set. The outcome of such study generally 

results in higher overall classifier accuracy but lower 

sensitivity. Therefore, the classifier is more biased towards 

the non-drug set and cannot be reliable [5].  
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The data sets used for antibiotic drug discovery are of 

similar nature and therefore should be analysed by using 

computational predictive model that is more capable of 

dealing with such imbalanced data sets. 

II. MATERIALS AND METHODS 

In this work, the drug data bank was used to form the 

basis of this study [6]. In order to compare our study with 

previous studies, the data set presented in [4] was first 

utilized. It consists of 22 E.Coli (strain K-12) drug target 

proteins and 4243 E. Coli proteins used as non-drug targets. 

The bacterial target dataset was downloaded from the 

Drug-Bank [6] in March 2011.  As one of the most common 

species is the E. coli (strain K-12) used as antibiotic drug 

targets, this current study has therefore particularly focused 

on the E. coli (strain K-12).  

The non-targets dataset was downloaded from the High-

quality Automated and Manual Annotation of microbial 

Proteomes (HAMAP) at Expasy [7]. One of the challenging 

parts of the study was to determine non-drug targets. In 

order to maintain consistency with the drug target set, this 

current study has taken into account of the E. coli (strain K-

12) only as this is found to be one of the most common 

species for all the targets.  The E. coli proteome currently 

contains highly accurate and complete sequences for the K-

12 strain with 4282 entries [6]. This set was culled to 

maintain 40% sequence identity resulting in 3753 proteins 

for the non- redundant dataset. Furthermore, there were 22 

approved antibiotic drug targets found in the data set. They 

were then removed from the set to form a non-redundant 

non-drug-target dataset of 3731 entries. Final data set now 

contains 22 drug-targets and 3731 non-drug targets proteins 

along with their sequence information. The proteins were 

then represented by using their amino acid composition. 

In this study, a basic sample ordering procedure used for 

pre-processing the imbalanced data set for the classification 

is proposed. The pre-processing procedure consists of 

calculating the Euclidean distance between targets and non-

targets and ordering the distances by means of two methods, 

ttest and the sum of distances, for each non-target samples. 

Due to smaller number of drug targets available, non-

drug targets need to be separated into a number of sub-sets 

with smaller number of proteins in order to overcome the 

problem of imbalanced data classification. This is achieved 

by calculating the Euclidean distances between drug targets 

and non-drug targets based on amino acid composition of 

the proteins. These sub-sets are constructed by applying the 
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“ttest statistical” and “sum of distance” methods. For the 

sum of distance method, sum of all the distances between 

non-drug targets and drug targets for each drug target is 

calculated, averaged and ranked in descending order. These 

sub-sets of proteins that contain non-drug targets can then 

be easily separated from each other. Alternativley, the ttest 

statistical method is also utilised instead of the average 

distance to determine the sub-groups where the ranking is 

based on the statistical p values of each sub-group. 

 Having identified the sub-groups for non-drug target 

proteins, a base classifier is applied to perform the 

classification task. In order to show independence of the 

method of a specific classifier, the analysis is carried out by 

using three different base classifiers, namely, Support 

Vector Machine, Linear Discriminative and Naïve Bayesian 

classifiers, which have been selected due to differences in 

their algorithmic structures.  

The proposed models to be utilized are listed in Table I 

and explained in the subsequent sections. For example, the 

model M1 as noted in the subsequent tables is constructed 

by using both ttest and LDA.  

In order to assess the performance of all the models, a 5-

fold cross validation is used. 

TABLE I.  PROPOSED MODELS FOR THE IMBALANCED DATA 

CLASSIFICATION 

 Ordering Methods Classification Methods 

 ttest sum of distances LDA SVM Bayesian 

M1 √  √   
M2  √ √   
M3 √   √  
M4  √  √  
M5 √    √ 
M6  √   √ 

A. Support Vector Machine  

Support vector machine (SVM) is one of the widely used 

classifiers and has been shown to yield better generalization 

ability for high-dimensional data sets [8]. For the SVM 

classifier, it is assumed that a two-group data set can always 

be separated by a hyper-plane provided that a suitable non-

linear mapping to a sufficiently high dimension is found. In 

addition, one of the main tasks during the construction of 

SVMs is to find separating hyper-plane(s) with the largest 

possible margin in order to result in a classifier with better 

generalization ability. The data points that highly represent 

the hyper-planes are the support vectors derived from the 

samples during training are. These points can then be 

regarded as the most representative data samples that could 

help build a robust classifier [9].  

B. Linear Discriminant Analysis  

For a two-class classification problem, linear 

discriminant analysis (LDA) tries to find one hyper-plane to 

separate one group from another one. There are various 

parameters that affect performance of LDA including 

distance metric such as Euclidean and Mahalanobis 

distances [9]. As LDA is one of the well-known and simple 

classifier models, it is also used as one of the base classifiers 

in order to show applicability and robustness of the method 

developed in this study. For the sake of simplicity, the 

Euclidean distance metric was selected to implement LDA-

based classifier. 

C. Naïve Bayes 

Bayesian classifier is created as to minimize the overall 

misclassification using a cost function. Naive Bayes 

classifier is one of the well-known and widely used 

Bayesian classifiers and easy to implement [9]. As its 

architecture is different from both SVM and LDA, it is also 

chosen as one of the base classifiers in order to show 

independence of the developed method.  

D. Performance Evaluation of the Classifiers 

As in this study, the binary classification yields two 

discrete results, namely positive and negative for which 

there are four possible outcomes; if a positive instance is 

classified correctly, it is counted as a true positive (TP), 

otherwise a false negative (FN) whereas if the negative 

instance is classified correctly, it is counted as a true 

negative (TN), otherwise a false positive (FP). 

Overall accuracy is generally used to assess overall 

performance of classifiers. However, it is alone not a 

reliable metric for imbalanced data classification problem as 

the influence of negative samples on overall accuracy is 

much higher than that of positive samples. Therefore, along 

with the accuracy, the following metrics should also be 

presented in for more objective evaluation [10] 

accuracy=(TP+TN)/(TP+TN+FP+FN) 

sensitivity=TP/(TP+FN) 

specificity=TN/(TN+FP) 

precision=TP/(TP+FP) 

gmeans=(sensitivity*specificity)1/2 

f-measure=2*sensitivity*precision/(sensitivity+precision) 

 
In this study, the minority and majority classes represent 

positive and negative groups, respectively. 

III. RESULTS AND DISCUSSION 

Experiments were carried out using three base classifiers 

(SVM, LDA and Naïve Bayes) with 22 drug-targets and 

3731 non-drug targets.  In order to compare our study with 

previous studies, the drug targets presented in [4] were 

utilized, which consists of 22 E.coli (strain K-12) proteins 

and the non-drug targets with 3731 E.coli proteins. 

The drug and non-drug targets samples were trained and 

divided into sub-groups by using the proposed methods, 

which subsequently produced 37 sub-groups. Each sub-

group has 22 drug-targets and 100 non-drug targets except 

for the last group that consists of 130 non-drug targets. The 

results obtained to assess the training performance of all the 

six predictive models (M1-M6) are presented in Table II.   
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TABLE III.  TEST RESULTS FOR M1 TABLE IV. TEST RESULTS FOR M2 
# of Groups Supporting 

Drug Candidates 

# of Approved Drug 

Candidates 

# of Total Drug 

Candidates 

21 15 571 

22 14 476 

23 12 387 

24 10 273 

25 7 172 

26 6 58 
 

# of Groups Supporting 

Drug Candidates 

# of Approved Drug 

Candidates 

# of Total Drug 

Candidates 

17 16 803 

18 15 658 

19 15 534 

20 15 394 

21 12 254 

22 10 115 
 

  
TABLE V.  TEST RESULTS FOR M3  TABLE VI.  TEST RESULTS FOR M4  

# of Groups Supporting 

Drug Candidates 

# of Approved Drug 

Candidates 

# of Total Drug 

Candidates 

18 5 132 

19 5 94 

20 4 68 

21 2 44 

22 1 24 

23 0 6 
 

# of Groups Supporting 

Drug Candidates 

# of Approved Drug 

Candidates 

# of Total Drug 

Candidates 

18 6 119 

19 5 91 

20 5 63 

21 5 37 

22 3 13 

23 2 4 
 

TABLE II.  THE RESULTS OF TRAINING PERFORMANCE FOR EACH 37 GROUP 

 
Statistical results of training performance for  M1 and M2 

M1 
Accuracy Sensitivity Specificity g-means f-measure 

M2 
Accuracy Sensitivity Specificity g-means f-measure 

Max 0.810 0.864 0.870 0.815 0.594  0.787 0.909 0.820 0.815 0.594 

Min 0.607 0.273 0.570 0.431 0.200  0.566 0.136 0.620 0.318 0.102 

Mean 0.685 0.592 0.705 0.639 0.399  0.684 0.585 0.705 0.632 0.396 

Median 0.680 0.545 0.700 0.629 0.394  0.672 0.591 0.700 0.632 0.400 

SD 0.044 0.165 0.050 0.086 0.085  0.056 0.191 0.046 0.121 0.120 

 

 
Statistical results of training performance for  M3 and M4 

M3 
Accuracy Sensitivity Specificity g-means f-measure 

M4 
Accuracy Sensitivity Specificity g-means f-measure 

Max 0.869 0.636 0.970 0.740 0.560  0.852 0.727 0.954 0.800 0.640 

Min 0.689 0.091 0.800 0.273 0.095  0.689 0.000 0.800 0.000 0.065 

Mean 0.767 0.281 0.873 0.479 0.292  0.771 0.285 0.876 0.463 NaN 

Median 0.779 0.227 0.870 0.450 0.263  0.770 0.227 0.880 0.450 NaN 

SD 0.038 0.156 0.036 0.126 0.126  0.037 0.200 0.038 0.181 NaN 

 

 

 
Statistical results of training performance for  M5 and M6 

M5 
Accuracy Sensitivity Specificity g-means f-measure 

M6 
Accuracy Sensitivity Specificity g-means f-measure 

Max 0.967 0.864 0.990 0.925 0.905  0.984 0.909 1.000 0.953 0.952 

Min 0.779 0.273 0.850 0.493 0.308  0.770 0.182 0.880 0.413 0.250 

Mean 0.856 0.534 0.926 0.691 0.560  0.880 0.515 0.960 0.686 0.592 

Median 0.844 0.545 0.930 0.693 0.522  0.869 0.455 0.970 0.650 0.563 

SD 0.056 0.209 0.037 0.145 0.186  0.068 0.239 0.034 0.174 0.237 
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TABLE VII.  TEST RESULTS FOR M5  TABLE VIII.  TEST RESULTS FOR M6 
# of Groups Supporting 

Drug Candidates 

# of Approved Drug 

Candidates 

# of Total Drug 

Candidates 

18 16 571 

19 15 499 

20 15 425 

21 9 221 

22 7 165 

23 6 69 
 

# of Groups Supporting 

Drug Candidates 

# of Approved Drug 

Candidates 

# of Total Drug 

Candidates 

16 20 715 

17 18 627 

18 17 522 

19 16 446 

20 6 165 

21 6 107 
  

  

As seen in Table II, in order to select the sub-groups that 

yield the best performance, the median values of the 

accuracies, gmeans, and f-measures are considered.  Having 

chosen the sub-groups for testing all data and removing the 

non-drug target samples belonging to that training group, 

several thresholds that refer to the number of sub-groups 

supporting drug candidates were determined to obtain 

potential drug candidates. As a result of the analyses 

presented in Tables III - VIII, number of potential drug 

candidates can be seen for several thresholds.   

As mentioned earlier, the drug candidates are compared 

with those found in the Drug Databank [6].  The 2nd column 

in the tables gives the number of approved drug candidates 

that we found in Databank while the 3rd column lists the 

number of total drug candidates. For example, if the number 

of groups supporting drug candidates is selected as 26 for 

M1 in Table III, the number of approved drug candidates is 

found to be 6 out of 58. Comparing this current study with 

the previous study [4], it can be seen that proportions of 

approved drug candidates to total drug candidates are 

between 0.0199 (~2%) and 0.5 (50%), whereas the earlier 

study presented just 0.016 corresponding to only 1 out of 64 

as the number of approved drug candidates.  

For the application of all the methods, the best model is 

found to be M4 with an accuracy of as high as 50%. The 

outcome suggests that this study not only increased number 

of potential drug candidates identified but also narrowed 

down the search space for experimental study for validation 

and verification for such potential drug candidates. 

As far as the algorithmic side of the models is 

considered, the results appear to suggest that the ordering 

method “ttest” used for pre-processing is less successful to 

obtain the drug candidates compared to “the sum of 

distance” approach. It is also observed that SVM tends to 

identify much more drug targets compared to Bayes and 

LDA making the in-silico drug discovery unreliable. 

Finally, it may be proposed that the hybrid method with 

“the sum of distances” and SVM is potentially useful in 

identifying such drug targets successfully. 

Applying the proposed method to the E. coli proteome 

identifies various sets of proteins that have similar 

properties to known antibiotic drug targets. These proteins 

may therefore be considered as potential new targets that 

may demonstrate antibacterial activity and therefore should 

be verified by means of lab-based experiments. 

IV. CONCLUSIONS 

In-silico discovery of antibiotic drug targets was studied 

by using sequence information of proteins and imbalanced 

data classifier. Comparison of antibiotic protein targets with 

non-target proteins from E. Coli has yielded highly 

comparable results when compared to the previous study [4] 

although only the amino acid composition of the drug target 

proteins was utilized as a feature set. This simple hybrid but 

effective method allows accurate identification of potential 

drug targets with an accuracy of as high as 50% compared 

to earlier study with an accuracy of 1.6%. The method is 

also shown to be independent of any base classifier and even 

works well with simple classifiers such as LDA. 

Given the promising results, further works are now 

being carried out in order to (i) develop similar but better 

hybrid methods that should be more capable of dealing with 

highly imbalanced data sets and (ii) incorporate feature 

extraction and selection methods (e.g., for sequence-driven 

feature set). This will be further applied to other drug 

candidate applications.   
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