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Abstract— Electro-stimulative hip revision systems accelerate
the bone growth around the implant and are capable of
reducing the number of side effects such as aseptic implant
loosening. A computational model was developed to determine
the optimal electrode arrangement for such a system, which is
currently under development. The optimization process depends
on the electrical properties of bone material and the used bone
substitute, which are subject to uncertainty in literature and
its production process, respectively. To quantify the influence
of these uncertain parameters on the optimal stimulation ratio
(OSR), the computationally effective non-intrusive polynomial
chaos technique was applied. The results indicate that the
conductivity of bone substitute is most sensitive to the OSR,
while its uncertainty was comparatively small compared to that
of the uncertain parameters.

I. INTRODUCTION

Since the 1990s the number of total hip athroplasty revi-
sions increased substantially, which is predicted to grow by
137% between 2005 and 2030 [1]. According to Springer et.
al [2], about one out of three total hip athroplasty revisions
have to be revised due to aseptic implant loosening. This
loosening is a result of mechanical instability at the implant-
bone-interface, which is facilitated by bone necrosis. In 1974,
Basset et al. [3] showed that electro-stimulation accelerates
the healing of fractures and bone defects, which results in a
decrease of bone necrosis and an enhance of bone recovery.
Therefore, combining a hip revision system with a system for
electro-stimulation could result in an improved mechanical
stability and durability of the implant.

A prototype of such an electro-stimulative hip revision
system is currently developed by the orthopedic clinic at the
University Medicine of Rostock. The prototype consists of
an inductively coupled system to induce an electric field
distribution of a certain intensity in an area around the
implant, which is considered to be beneficial for bone growth
and bone recovery. To provide the optimal positioning of
the stimulation electrodes, a computational model of the hip
revision system, comprising the implant as well as a model
of a pelvic bone, was developed and applied to a multi-
objective optimization algorithm [4]. Besides the geometry
of the implant and the pelvic bone, which are controllable
parameters in the considered hip revision system [5], the
material properties of bone tissue and bone substitute, which
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Fig. 1. Model of the acetabular cup including anchorage cone and four
stimulation electrodes.

is used to fixate the implant, are subject to uncertainty in
literature [6], [7]. This uncertainty results from the hetero-
geneity and composition of the materials as well as from
deviations in the measurements of biological tissue, in vivo
and ex vivo [8].

The quantification of the influence of this uncertainty
on the optimization of the electro-stimulative hip revision
system can be carried by stochastical methods, such as
Monte Carlo simulation (MCS), but require typically a large
number of realizations of the deterministic model to provide
a sufficient accuracy of the statistics. Therefore, MCS is not
applicable to a computationally expensive models such as
the one presented here. To reduce the computational bur-
den of the uncertainty quantification, the polynomial chaos
technique (PCT) can be used. The PCT approximates the
statistics of the quantity of interest by an expansion in multi-
variate orthogonal polynomials, for which only the evaluation
of the coefficients require the realization of the deterministic
model.

For the uncertainty quantification of the optimal electrode
arrangement an in-house implementation of a non-intrusive
version of the PCT is used, which was already successfully
applied in the field of neural engineering [9]. A global
sensitivity analysis based on Sobol’ indices is performed to
investigate the influence of each of the uncertain material
properties in the computational model as well as their
interaction [13].

II. METHODS

A. Hip Revision System and Optimal Electrode Arrangement

The electro-stimulative hip revision system consists of an
acetabular and a femoral component, at which surface the
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stimulation electrodes are attached (Fig. 1). A primary coil
around the patient’s hip provides a time-harmonic magnetic
field at a frequency of 20 Hz, which induces a location-
dependent current in the secondary coils of the stimulation
electrodes, resulting in an electric potential distribution in the
area around the implant. An effective stimulation depends
substantially on the electrode arrangement. Therefore, an
optimization of this arrangement would allow for an optimal
stimulation in future designs. Due to the damage of the
primary implant, the bone shows generally defects in the
femoral and acetabular area. The defects in the acetabular
area, which comprises cavities and discontinuities, are treated
by the use of a larger acetabular cup and replenishment with
bone substitute.

Since the design of the femoral component is limited
by mechanical requirements of the system, the optimization
is only carried out for the acetabular component. Based
on the work of Kraus [10] and clinical advice, an electric
field of 5 − 70Vm−1 in the proximity of the implant and
35−70Vm−1 in the defective area, which both forms the area
of interest, is considered to be optimal. These requirements
constitute the primary and secondary optimization goals, re-
spectively. The optimization is carried out for an arrangement
of four electrodes, because of practical reasons considering
the attachment of the electrodes during surgery.

B. Computational Model and Optimization Algorithm

The computational model comprises a layered CAD model
of the pelvic bone, which is derived from computer tomog-
raphy scans and altered manually to emulate a defective
bone by inserting a cavity filled with bone substitute, and
the acetabular cup (Fig. 2). The model geometry is updated
for each electrode arrangement given by the optimization
process. Since the electrical properties are linear, the princi-
ple of superposition can be applied to obtain the electric
field for any possible electrode arrangement out of the
electric field distributions generated by each electrode. These
basis distributions are computed with the Finite-Integration-
Technique using CST EM Studio R© by subsequently applying
a stimulation amplitude of 1V at one electrode at each
possible position. This approach enables the optimization
process to be carried out in post-processing and, there-
fore, reduces substantially its computational expense. The
optimization process uses the multi-objective, evolutionary
algorithm NSGA II to obtain out of a randomly chosen set
of electrode arrangements a new generation [11]. After a
sufficient amount of generations a stable state is reached,
which gives a good approximation of the set of Pareto
optimal arrangements [5].

C. Uncertainty Quantification Using Polynomial Chaos

Uncertainty quantification is applied to the computational
model to investigate the sensitivity and robustness of the
optimal stimulated area in the proximity of the implant
regarding the uncertain conductivity of cancellous bone κc
and bone substitute κs for the previously computed optimal
electrode arrangement.

Bone substitute

Cancellous bone

Pelvic bone

Acetabular cup

Point of Interest

Fig. 2. Acetabular cup fixated in the model of the pelvic bone with
the defect filled up with bone substitute. The electric field norm is shown
exemplary in the cut-plane.

The PCT allows for the quantification of the influence
of a number of uncertain parameters X1, . . . , XM on the
quantity of interest Y by approximating the statistics of
the quantity of interest Y by an expansion in a truncated
series of multi-variate orthogonal polynomial basis functions
ψi(ξ), where the stochastically independent random variables
ξ = (ξ1, . . . , ξM ) are modelled to be uniformly distributed
in the interval [−1, 1]. The basis functions ψi(ξ) can then be
written as product of uni-variate basis functions. Considering
the uniformly distributed random variables ξ, the p−th order
Legendre polynomials Lp(x) ∈ [−1, 1] constitute an optimal
choice [12]. By defining a bijective mapping

k := α(k) = (α
(k)
1 , . . . , α

(k)
M ) (1)

with the uni-variate orders 0 ≤ α
(k)
i ≤ p, the multi-variate

expansion of order p is given by

Y ≈
Pout∑
k=0

ckψk(ξ) (2)

where the expansion coefficients ck are determined by pro-
jecting (2) on each basis function ψi(ξ) and exploiting its
orthogonality. The resulting integral is evaluated numerically
by using nested tensor grids TG(L,M) with grid level
L = p, where the one-dimensional nodes n(L) are given
by the Clenshaw-Curtis rule with exponential growth given
by n(L) = 2L+1. The Sobol’ indices S(i, . . . , j) determine
the relative influence of each uncertain parameter as well as
their interactions and is determined by an analysis of variance
(ANOVA) decomposition of Y [13]

S(i, . . . , j) =
V(i, . . . , j)

V
(3)

where the conditional variances V(i, . . . , j) for the uncertain
parameters Xi, . . . , Xj can be computed out of the expansion
coefficients ck and V is the total variance [15].

D. Modeling of the Material Properties

Bone substitute is an artificial material, which composi-
tion comprises parts of disintegrated parts cancellous bone.
Therefore, its electrical properties depend substantially on
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Fig. 3. Estimated probability density of the optimal stimulation ratio (OSR)
for different expansion orders p.

this composition. To investigate the sensitivity and uncer-
tainty in the optimal electrode arrangement in dependence of
the conductivity of cancellous bone κc and bone substitute
κs, both parameters were modelled to be uniformly dis-
tributed random variables in U [a, b], where the lower bound-
ary a = 0.08Sm−1 and the upper boundary b = 0.15Sm−1

are based on literature data [6], [7]. The resulting magnitude
of uncertainty in the random model parameters, determined
by the relative standard deviation σr = σ/µ with the mean
µ and the standard deviation σ, is approximately 18%.
Since the random parameters Xi are uniformly distributed,
the mapping on the random variables ξ, which is required
in (2), can be carried out by a linear transformation. The
optimal electrode arrangement, which was required for the
uncertainty quantification of the optimal stimulated area, was
computed for the conductivity of cancellous bone and bone
substitute set to the values of the lower boundary and the
mean, respectively.

III. RESULTS

The investigated quantity of interest was the optimal
stimulation ratio (OSR), which is defined as the ratio between
the area of optimal stimulation provided by the Pareto set of
optimal electrode arrangements and the area of interest. In
addition, the norm of the electric field at a point of interest
(POI) in the defective area close to the material boundary
of cancellous bone was investigated (Fig. 2). To provide
an accurate approximation of the statistics of the quantity
of interest, the relative error of its variance V(OSR) and
its mean E(OSR) was controlled for increasing expansion
orders p. An increase of the expansion order from p = 3
to p = 4 resulted in a relative error of εE(OSR) < 0.2% and
εV(OSR) < 1.6%, respectively. The average error in the mean
of the electric field norm was below 4 · 10−7 % and below
3 ·10−6 % for its variance. The estimated probability density
of the OSR showed a slightly asymmetric distribution with a
peak at relatively small ratios (Fig. 3). The estimation of the
probability densities was carried out by applying MCS to the
computed PCT expansion with a number of 1 · 106 random
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Fig. 4. Derived Sobol’ indices S of the OSR for the conductivity of
cancellous bone κc and bone substitute κs.

TABLE I
STATISTIC MEASURES OF THE MODEL PARAMETERS, THE ELECTRIC

FIELD NORM ||E||2 AT THE POINT OF INTEREST (POI), AND THE

OPTIMAL STIMULATION RATIO (OSR).

µ σ σr

κs, κc 0.11 Sm−1 0.02 Sm−1 17.9%
||EPOI||2 70.6Vm−1 8.3Vm−1 11.7%

OSR 0.766 0.005 0.65%

samples, which ensured a sufficiently accurate estimation.
An investigation of the Sobol’ indices indicate that the

uncertainty in the OSR is most sensitive to the uncertainty in
the conductivity of bone substitute κs, with an influence ratio
of approximately two-thirds compared to the uncertainty
in the conductivity of cancellous bone κc (Fig. 4). The
influence of the interaction of both uncertain parameters
was negligible. The investigation of the statistic measures
of the OSR suggested that in average 76.6 ± 0.5% of the
area of interest are optimal stimulated, which resulted in
an uncertainty in the OSR of 0.65%. The uncertainty in
the electric field norm at the POI was with a value of
approximately 12% substantially larger than the uncertainty
in the OSR (Table I). The mean area of optimal stimulation
is enclosed by areas of over-stimulation in the proximity
of the stimulation electrodes and areas of under-stimulation
at the exterior boundaries of the acetabular cup (Fig. 5).
The largest optimal stimulation area is situated around the
leftmost electrode, which is the position of the defective area.

IV. DISCUSSION

Focus of this study was the investigation of the uncertainty
in the OSR for an optimal electrode arrangement of an
electro-stimulative hip revision system in dependence of
the uncertain conductivity of cancellous bone and bone
substitute. With a value of approximately 0.7%, the un-
certainty in the OSR was substantially smaller than in the
model parameters, which showed an uncertainty value of
approximately 18% (Table I). The uncertainty in the POI
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Fig. 5. Optimal stimulation area regarding the first optimization goal for
the mean OSR. Areas of over-stimulation are situated in the proximity of
the stimulation electrodes.

was substantially larger as in the OSR. Since the POI was
chosen to be close to a stimulation electrode as well as
the boundary between bone substitute and cancellous bone
(Fig. 2), the larger uncertainty in the POI is presumably a
result of the sensitivity of the electric field to the electrical
properties at a material boundary. This result points out
that in local areas larger uncertainties may occur despite an
overall small uncertainty in the OSR, which can result in
over- or under-stimulation in these areas depending on the
material properties of the used bone substitute. Knowledge
about possible areas of over- and under-stimulation is crucial,
since they may result in death of bone cells or the absence
of the beneficial electro-stimulative effect, respectively.

The investigation of the Sobol’ indices revealed a larger
influence of the uncertainty in bone substitute than in cancel-
lous bone and negligible influence of their interaction on the
uncertainty in the OSR (Fig. 4). This finding can be attributed
to a stricter requirement on the optimal stimulation effect in
the defective area, which was filled with bone substitute. This
stricter requirement formed by the second optimization goal
resulted in a larger optimal stimulation area at the defect,
which is situated around the leftmost stimulation electrode
in Fig. 5.

An expansion order of p = 3, resulting in 81 integration
nodes, was found to approximate the statistics of the quan-
tities of interest with a sufficient accuracy given by relative
errors below 1.6%. However, to provide the estimate of the
relative error, 208 additional realizations of the deterministic
model had to be computed. Tensor grid integration is limited
by an substantial growth of the required integration nodes
with grid level and dimension. Therefore, the used non-
intrusive PCT is only applicable for a small number of
uncertain model parameters compared to MCS, which is
dimension-independent. In addition, the convergence of the
PCT depends on the quantity of interest being sufficiently
smooth in the integration domain [14]. Comparing the ap-
proximation errors for the electric field norm at the POI and

for the OSR shows larger errors for the OSR, which could be
a result of additional functional dependencies arising from
the computation of the OSR out of the given electric field.
The investigation of the response surfaces of the OSR with
respect to the model parameters confirmed this assumption
by parts by showing small discontinuities in the integration
domain. Therefore, an improvement of the deterministic
model accuracy may improve the convergence of PCT as
well.

The optimal stimulation ratio was approximately 76.6 ±
0.5%. A further increase of this ratio is limited by the
presence of the anchorage cone, which have an adverse
effect on the optimal stimulation area. In the optimization
procedure, the used electrode arrangements try to counteract
this effect, which also results in increased areas of over-
stimulation in the proximity of the stimulation electrodes
(Fig. 5). In future studies, this over-stimulation could be
reduced by adding a third optimization goal.
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ulation in der Orthopädie, Orthopädie, vol. 13, Apr 1984, pp. 78-92.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE T. Evolut.
Comput., vol. 6, Apr 2002, pp. 182-197.

[12] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral
Method Approach. Princeton: Princeton University Press, 2010.

[13] I. M. Sobol, Global sensitivity indices for nonlinear mathematical
models and their Monte Carlo estimates, Ma. Comput. Sci. Eng., vol.
55, Feb. 2001, pp. 271-280.

[14] F. Nobile, R. Tempone, and C. G. Webster, A sparse grid stochastic
collocation method for partial differential equations with random input
data, SIAM J. Numer. Anal., vol. 46, May 2008, pp. 2309-2345.

[15] O. Moreau, K. Beddek, S. Clenet, and Y. Le Menach, Stochastic
Nondestructive Testing Simulation: Sensitivity Analysis Applied to
Material Properties in Clogging of Nuclear Powerplant Steam Gen-
erators, IEEE T. Magn., vol. 49, May 2013, pp. 1873-1876.

827


