
  

 

Abstract— This paper presents the real-time implementation 

of an adaptive speech processing pipeline for cochlear implants 

on the smartphone platform. The pipeline is capable of real-time 

classification of background noise environment and automated 

tuning of a noise suppression component based upon the 

detected background noise environment. This pipeline was 

previously implemented on the FDA-approved PDA platform 

for cochlear implant studies. The paper discusses the steps taken 

to achieve the real-time implementation of the pipeline on the 

smartphone platform. In addition, it includes the real-time 

timing as well as the noise suppression results when the entire 

pipeline was run on the smartphone platform. 

 
Index Terms— Cochlear implants, real-time implementation 

of cochlear implant speech processing pipeline, smartphone 

implementation 

 

I. INTRODUCTION 

The number of cochlear implant (CI) recipient patients 

has increased to more than 200,000 worldwide [1]. Advances 

in the signal processing technology have the potential to 

provide improved hearing sensation for these patients. CIs 

perform well in quiet environments, however, in noisy 

environments their performance has been shown to degrade 

noticeably [2]. In order to maintain cochlear implant 

performance across a wide range of noisy environments, a 

real-time adaptive speech processing pipeline was developed 

in [3]. This paper discusses an alternative and widely 

available platform of smartphones to run the previously 

developed speech processing pipeline. The main motivation 

in pursuing smartphones as an alternative processing platform 

for this and other medical applications is their ubiquitous 

aspect and widespread usage noting that more than a billion 

smartphones are in use today [4]. 

The previous PDA platform on which the noise adaptive 

speech processing pipeline was implemented has been 

approved for clinical trials by the US Food and Drug 

Administration (FDA) [5].  This paper builds upon the 

previous work done in [3, 5-12] to develop a real-time speech 

processing pipeline capable of classifying the background 

noise environment and automatically tuning a noise 

suppression component. The speech processing pipeline 

implemented on the PDA platform addressed the issue of 

balancing the computational complexity of its various 

components while maintaining acceptable classification and 

implant stimulation rates. 

The real-time implementation covered in this paper is 

similarly capable of classifying the background noise 
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environment and automatically adjusting the parameters of 

the noise suppression component with the difference that the 

entire pipeline runs on a smartphone platform at higher 

processing speeds. This implementation provides 

improvements over the previous implementation in terms of 

higher accuracy and higher computational efficiency. 

The remainder of this paper is organized as follows. An 

overview of the cochlear implant speech processing pipeline is 

presented in Section II for readers to see all the components 

involved in the pipeline. Details and issues encountered in the 

real-time smartphone implementation are then mentioned in 

Section III. Finally, Section IV covers the computation and 

performance results when running the entire pipeline on a 

smartphone platform. 

II. PREVIOUSLY DEVELOPED COCHLEAR IMPLANT                   

SPEECH PROCESSING PIPELINE 

Fig. 1 shows the cochlear implant speech processing 

pipeline that was previously developed by our research team 

and reported in [3, 5-12]. The pipeline consists of two parallel 

simultaneous real-time processing paths. An input signal at 

22 kHz is first accumulated into 256 sample frames 

representing 11.6 ms of audio. These frames are then 

decomposed into a frequency domain representation using 

either a recursive wavelet packet transform or a Fast Fourier 

Transform. 

In the primary path, shown in the top path of Fig. 1, noise 

suppression parameters are computed using frequency 

decomposition coefficients and previously trained gain tables 

for each noise class. The noise suppression parameters are 

applied to the frequency bands of the wavelet packet 

transform. Channel envelopes are then extracted by 

combining the suppressed wavelet packet coefficients which 

fall within certain channel frequency bins. Lastly, the 

amplitudes of the electrode stimulating pulses are determined 

using the noise suppressed channel envelopes. 

In the secondary processing path, shown in the bottom 

path of Fig. 1, a voice activity detector (VAD) labels a signal 

frame as either voiced/unvoiced speech or noise only based 

on a subband power difference measure between the low 

frequency and high frequency bands of the first stage wavelet 

packet coefficients [6]. A guard time of 25 frames is added to 

help ensure that unvoiced segments of speech are not 

classified as noise. If a frame is detected as having voice 

activity, no further processing is done in the secondary path 

for that particular frame. Otherwise, noise only frames are 

passed along to the feature extraction where a 26 element 

MFCC (mel frequency cepstrum coefficients) plus ΔMFCC 

noise feature vector is computed. A classification is then 

performed via a GMM (Gaussian mixture model) classifier 
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Figure 1.  Cochlear implant speech processing pipeline [3] 

 

  

Figure 2.  Settings screen of the cochlear implant speech processing 

pipeline on smartphone platform 

previously trained for various noise classes. A buffer of 

previous classification decisions is kept and a majority voting 

decision is applied to this buffer. The majority voting 

outcome is passed along to the noise suppression component 

to trigger a switch of noise suppression parameters if 

necessary. The buffer is also used to help ensure that the 

classification does not rapidly fluctuate between classes as 

quick changes in the applied noise suppression create listener 

discomfort. The noise suppression component uses the log 

minimum mean square error criterion. 

III. SMARTPHONE IMPLEMENTATION 

In this work, a smartphone running the Android 

operating system was used considering that eighty percent 

market share of smartphones are now Android smartphones 

[4]. The model of the smartphone used here was a Motorola 

Droid 3 smartphone. This phone utilizes an ARM Cortex-A9 

processor (1 GHz) with 512 MB RAM on which our pipeline 

was implemented. The developed code was seamlessly run on 

other Android smartphones. The Android Developer Tools 

[14] were used for all the coding and debugging of the 

cochlear implant speech processing pipeline shown in Fig. 1. 

The main program code was written in Java to allow the use 

of Android APIs for the graphical user interface, data storage 

access, and audio recording capability. The use of Java also 

allowed easy threading of the program components. Aside 

from rewriting the code in floating-point, this constituted 

another major difference with the PDA implementation. 

Separate threads were created for the GUI, audio input, 

frequency domain transforms, noise classification, noise 

suppression, envelope computation, and file output. 

Real-time graphing was also performed using the 

AndroidPlot library. 

The Android Native Development Kit (NDK) [14] was 

used to allow access to the NEON Media Processing Engine 

(MPE) [14, 15]. The NEON MPE is a SIMD coprocessor 

which supports both fixed and floating-point operations. 

Several code segments for performing floating-point vector 

computations such as scaling, dot product, and filtering were 

written in Assembly using the Java Native Interface (JNI). 

Fig. 2 shows a snapshot of the configuration screen of the 

implemented pipeline on the smartphone. This settings 

configuration interface was devised to allow the parameters 

of the pipeline to be adjusted without needing to recompile 

the code. The configuration settings allow disabling NEON 

floating-point processing to simulate the performance of a 

smartphone not having the NEON coprocessor. The settings 

also allow disabling noise suppression and classification. An 

audio playback option is included to allow the user to hear the 

original sound when testing a recorded audio file. The tunable 

parameters are the microphone sampling rate, frame size, 

buffer length for the noise classification majority vote, and 
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Fig.3.  Log mean absolute error of fixed-point electrode pulse amplitudes 

over 64 unique 30 second audio clips 

0.0001

0.001

0.01

0.1

1

10

1 64

L
o

g
 M

e
a

n
 E

r
r
o

r
 A

m
p

li
tu

d
e
 

Sample File 

Fixed Point

Floating Point

 

Fig.4.  PESQ comparrison between  adaptive noise supression and no noise 
suppression running on smartphone platform - error bars represent standard 

deviations 
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number of maximum amplitude channels to select for 

electrode pulse generation. Lastly, the user can select which 

channel from the electrode pulse amplitudes to graph on the 

smartphone screen. 

The processing pipeline starts at the audio input stage 

where sampled audio data is either read from a file or 

accumulated from the smartphone microphone. In other 

words, the pipeline can be tested based on either pre-recorded 

signals or the microphone signals in real-time. An object is 

created for each frame of audio data which stores the audio 

samples as well as intermediate computation results. A 

blocking queue is used to connect each stage of processing to 

the next. Processing is linear, following each step in order 

before a program object is passed along to the next stage. At 

the end of the pipeline, debugging data are stored, along with 

sampled audio if the microphone input is used. 

Previously, on the FDA-approved PDA platform, the 

processing was done using the fixed-point Q format to 

accommodate for the lack of a floating-point arithmetic unit 

on the platform. The floating-point number representation on 

the smartphone platform allows one to maintain a consistent 

arithmetic manipulation throughout the entire pipeline, rather 

than converting between different Q formats when higher 

precision is needed. 

IV. RESULTS AND DISCUSSION 

A thorough analysis was performed to compare the 

operation of the smartphone implementation with the 

previous PDA implementation. The VAD and GMM 

decisions matched in the two implementations, correctly 

identifying speech segments and noise classes. The accuracy 

of the recursive wavelet packet transform represented by the 

mean squared error was obtained to be 1x10
-5

 for the 

fixed-point implementation and 1x10
-8

 for the floating-point 

implementation. The Q24 fixed-point implementation began 

to differ from the double-precision reference at the noise 

suppression and electrode pulse generation stages. 

Mean absolute errors for sample audio files were 

calculated by averaging the absolute error of each pulse as per 

the following equation: 
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where Y denotes the signal under analysis and Q the 

double-precision reference signal, N the total number of 

sample frames in a file, P the number of pulses per frame, and 

C the number of channels. This error is shown in Fig. 3 where 

the mean absolute error for 64 different audio files is 

displayed in log scale. During the final low-pass filtering 

stage and channel selection, the error in the fixed-point 

implementation caused different maximum amplitude 

channels to be selected due to differing pulse amplitudes. 

Overall the errors in the fixed-point implementation were 

brief, lasting 10 to 20 frames in duration. In the smartphone 

implementation, the channel selection error was not present, 

and the negligible mean absolute errors were caused by 

rounding errors in the final data type conversion. 

The widely used PESQ (Perceptual Evaluation of Speech 

Quality) speech quality measure [16, 17] was used to analyze 

the performance of the adaptive noise suppression in the 

pipeline. Fig.4 provides the PESQ comparison results 

between the adaptive noise suppression and no noise 

suppression cases on the smartphone platform. A dataset for 

this test was created based on the IEEE speech corpus 

consisting of 720 sentences [18]. The speech files were 

artificially corrupted with machinery, street, and babble noise 

with a SNR of 0 dB. The three sets of noise corrupted files 

were then subjected to the noise suppression running on the 

smartphone to get the enhanced speech files. As can be seen 

from Fig. 4, for all the noise environments, the adaptive noise 

suppression generated a higher PESQ score than the no 

suppression case. 

Timing results for the three platforms of smartphone, 

PDA, and PC are shown in Table I. The PC target had a 3.33 

GHz processor with 4 GB RAM and the PDA target had a 520 

MHz processor with 64 MB RAM. On the smartphone 

platform, the processing time took 3.98 ms with NEON and 

5.45 ms without NEON for one 256 sample frame of audio 

data at 22 kHz sampling frequency (11.6 ms of audio). The 

use of the NEON coprocessor led to a 27 percent decrease in 
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TABLE I.  SPEECH PROCESSING PIPELINETIMING PROFILE (256-SAMPLE FRAMES AT 22 KHZ OR 11.6 MSEC FRAMES) 

Processing 

Time in ms on 
Entire Pipeline Recursive WPT 

Voice Activity 

Detector 

Feature Extraction, 

Noise Classifier 

Noise 

Suppression 

Envelope 

Computation 

Smartphone 

w/ NEON 
3.98 1.10 0.22 0.21 1.77 0.68 

Smartphone 

w/o NEON 
5.45 1.13 0.46 0.73 2.07 1.06 

PDA 8.41 1.24 0.91 2.03 2.40 1.83 

PC 0.70 0.12 0.03 0.14 0.36 0.05 

 

the overall computation time. Timing differences between the 

three target platforms are attributed mainly to clock speed 

differences, and to a lesser extent, to their memories. The 

recursive wavelet packet transform and the noise suppression 

did not gain much increase in computational efficiency from 

the floating-point implementation. The largest processing 

gains were seen in the VAD, MFCC feature extraction, noise 

classifier, and envelope computation. The increase in the 

computational efficiency of these modules was found to be 

due to the loops within these functions being replaced with 

the NEON SIMD code.  

V. CONCLUSION 

In this paper it was demonstrated that the previously 

developed cochlear implant speech processing pipeline could 

be implemented on a smartphone platform and be operated in 

real-time. Modification to the pipeline was done to allow 

higher precision floating-point data representation and 

architecture specific optimizations. Benefits gained from this 

new implementation are faster processing time, and greater 

computation precision. Further work is needed to properly 

feed the generated pulses by the smartphone platform into 

implanted electrodes. In essence, the real-time 

smartphone-based implementation presented in this paper 

makes smartphones a viable alternative to the FDA-approved 

PDA platform for cochlear implant studies. 
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