

Abstract— This paper presents the real-time implementation

of an adaptive speech processing pipeline for cochlear implants

on the smartphone platform. The pipeline is capable of real-time

classification of background noise environment and automated

tuning of a noise suppression component based upon the

detected background noise environment. This pipeline was

previously implemented on the FDA-approved PDA platform

for cochlear implant studies. The paper discusses the steps taken

to achieve the real-time implementation of the pipeline on the

smartphone platform. In addition, it includes the real-time

timing as well as the noise suppression results when the entire

pipeline was run on the smartphone platform.

Index Terms— Cochlear implants, real-time implementation

of cochlear implant speech processing pipeline, smartphone

implementation

I. INTRODUCTION

The number of cochlear implant (CI) recipient patients

has increased to more than 200,000 worldwide [1]. Advances

in the signal processing technology have the potential to

provide improved hearing sensation for these patients. CIs

perform well in quiet environments, however, in noisy

environments their performance has been shown to degrade

noticeably [2]. In order to maintain cochlear implant

performance across a wide range of noisy environments, a

real-time adaptive speech processing pipeline was developed

in [3]. This paper discusses an alternative and widely

available platform of smartphones to run the previously

developed speech processing pipeline. The main motivation

in pursuing smartphones as an alternative processing platform

for this and other medical applications is their ubiquitous

aspect and widespread usage noting that more than a billion

smartphones are in use today [4].

The previous PDA platform on which the noise adaptive

speech processing pipeline was implemented has been

approved for clinical trials by the US Food and Drug

Administration (FDA) [5]. This paper builds upon the

previous work done in [3, 5-12] to develop a real-time speech

processing pipeline capable of classifying the background

noise environment and automatically tuning a noise

suppression component. The speech processing pipeline

implemented on the PDA platform addressed the issue of

balancing the computational complexity of its various

components while maintaining acceptable classification and

implant stimulation rates.

The real-time implementation covered in this paper is

similarly capable of classifying the background noise

Authors are with the Department of Electrical Engineering, University of

Texas at Dallas, Richardson, TX 75080, USA.

environment and automatically adjusting the parameters of

the noise suppression component with the difference that the

entire pipeline runs on a smartphone platform at higher

processing speeds. This implementation provides

improvements over the previous implementation in terms of

higher accuracy and higher computational efficiency.

The remainder of this paper is organized as follows. An

overview of the cochlear implant speech processing pipeline is

presented in Section II for readers to see all the components

involved in the pipeline. Details and issues encountered in the

real-time smartphone implementation are then mentioned in

Section III. Finally, Section IV covers the computation and

performance results when running the entire pipeline on a

smartphone platform.

II. PREVIOUSLY DEVELOPED COCHLEAR IMPLANT

SPEECH PROCESSING PIPELINE

Fig. 1 shows the cochlear implant speech processing

pipeline that was previously developed by our research team

and reported in [3, 5-12]. The pipeline consists of two parallel

simultaneous real-time processing paths. An input signal at

22 kHz is first accumulated into 256 sample frames

representing 11.6 ms of audio. These frames are then

decomposed into a frequency domain representation using

either a recursive wavelet packet transform or a Fast Fourier

Transform.

In the primary path, shown in the top path of Fig. 1, noise

suppression parameters are computed using frequency

decomposition coefficients and previously trained gain tables

for each noise class. The noise suppression parameters are

applied to the frequency bands of the wavelet packet

transform. Channel envelopes are then extracted by

combining the suppressed wavelet packet coefficients which

fall within certain channel frequency bins. Lastly, the

amplitudes of the electrode stimulating pulses are determined

using the noise suppressed channel envelopes.

In the secondary processing path, shown in the bottom

path of Fig. 1, a voice activity detector (VAD) labels a signal

frame as either voiced/unvoiced speech or noise only based

on a subband power difference measure between the low

frequency and high frequency bands of the first stage wavelet

packet coefficients [6]. A guard time of 25 frames is added to

help ensure that unvoiced segments of speech are not

classified as noise. If a frame is detected as having voice

activity, no further processing is done in the secondary path

for that particular frame. Otherwise, noise only frames are

passed along to the feature extraction where a 26 element

MFCC (mel frequency cepstrum coefficients) plus ΔMFCC

noise feature vector is computed. A classification is then

performed via a GMM (Gaussian mixture model) classifier

Real-Time Implementation of Cochlear Implant

Speech Processing Pipeline on Smartphones

Shane Parris, Murat Torlak, IEEE Senior Member, and Nasser Kehtarnavaz, IEEE Fellow

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 886

Decomposition

using recursive

wavelet packet

transform

Input

speech

Voice

Activity

Detector

(VAD)

Extract

features

Classifier-

detect noise

class

Parameter

tuning of noise

suppression

depending on

noise class

§ Envelope extraction

§ Selection of max

amplitude channels

§ Compression

Change detected

M bands

Electrode

stimulation

pulses

Noise

Arrange

coefficients

in

ascending

order of

frequency

Parallel path for noise environment detection

Noise

suppression

Cochlear implant speech processing path

Figure 1. Cochlear implant speech processing pipeline [3]

Figure 2. Settings screen of the cochlear implant speech processing

pipeline on smartphone platform

previously trained for various noise classes. A buffer of

previous classification decisions is kept and a majority voting

decision is applied to this buffer. The majority voting

outcome is passed along to the noise suppression component

to trigger a switch of noise suppression parameters if

necessary. The buffer is also used to help ensure that the

classification does not rapidly fluctuate between classes as

quick changes in the applied noise suppression create listener

discomfort. The noise suppression component uses the log

minimum mean square error criterion.

III. SMARTPHONE IMPLEMENTATION

In this work, a smartphone running the Android

operating system was used considering that eighty percent

market share of smartphones are now Android smartphones

[4]. The model of the smartphone used here was a Motorola

Droid 3 smartphone. This phone utilizes an ARM Cortex-A9

processor (1 GHz) with 512 MB RAM on which our pipeline

was implemented. The developed code was seamlessly run on

other Android smartphones. The Android Developer Tools

[14] were used for all the coding and debugging of the

cochlear implant speech processing pipeline shown in Fig. 1.

The main program code was written in Java to allow the use

of Android APIs for the graphical user interface, data storage

access, and audio recording capability. The use of Java also

allowed easy threading of the program components. Aside

from rewriting the code in floating-point, this constituted

another major difference with the PDA implementation.

Separate threads were created for the GUI, audio input,

frequency domain transforms, noise classification, noise

suppression, envelope computation, and file output.

Real-time graphing was also performed using the

AndroidPlot library.

The Android Native Development Kit (NDK) [14] was

used to allow access to the NEON Media Processing Engine

(MPE) [14, 15]. The NEON MPE is a SIMD coprocessor

which supports both fixed and floating-point operations.

Several code segments for performing floating-point vector

computations such as scaling, dot product, and filtering were

written in Assembly using the Java Native Interface (JNI).

Fig. 2 shows a snapshot of the configuration screen of the

implemented pipeline on the smartphone. This settings

configuration interface was devised to allow the parameters

of the pipeline to be adjusted without needing to recompile

the code. The configuration settings allow disabling NEON

floating-point processing to simulate the performance of a

smartphone not having the NEON coprocessor. The settings

also allow disabling noise suppression and classification. An

audio playback option is included to allow the user to hear the

original sound when testing a recorded audio file. The tunable

parameters are the microphone sampling rate, frame size,

buffer length for the noise classification majority vote, and

887

Fig.3. Log mean absolute error of fixed-point electrode pulse amplitudes

over 64 unique 30 second audio clips

0.0001

0.001

0.01

0.1

1

10

1 64

L
o

g
 M

e
a

n
 E

r
r
o

r
 A

m
p

li
tu

d
e

Sample File

Fixed Point

Floating Point

Fig.4. PESQ comparrison between adaptive noise supression and no noise
suppression running on smartphone platform - error bars represent standard

deviations

0

0.5

1

1.5

2

2.5

3

Machinery Street Babble

P
E

S
Q

No Suppression

Adaptive Suppression

number of maximum amplitude channels to select for

electrode pulse generation. Lastly, the user can select which

channel from the electrode pulse amplitudes to graph on the

smartphone screen.

The processing pipeline starts at the audio input stage

where sampled audio data is either read from a file or

accumulated from the smartphone microphone. In other

words, the pipeline can be tested based on either pre-recorded

signals or the microphone signals in real-time. An object is

created for each frame of audio data which stores the audio

samples as well as intermediate computation results. A

blocking queue is used to connect each stage of processing to

the next. Processing is linear, following each step in order

before a program object is passed along to the next stage. At

the end of the pipeline, debugging data are stored, along with

sampled audio if the microphone input is used.

Previously, on the FDA-approved PDA platform, the

processing was done using the fixed-point Q format to

accommodate for the lack of a floating-point arithmetic unit

on the platform. The floating-point number representation on

the smartphone platform allows one to maintain a consistent

arithmetic manipulation throughout the entire pipeline, rather

than converting between different Q formats when higher

precision is needed.

IV. RESULTS AND DISCUSSION

A thorough analysis was performed to compare the

operation of the smartphone implementation with the

previous PDA implementation. The VAD and GMM

decisions matched in the two implementations, correctly

identifying speech segments and noise classes. The accuracy

of the recursive wavelet packet transform represented by the

mean squared error was obtained to be 1x10
-5

 for the

fixed-point implementation and 1x10
-8

 for the floating-point

implementation. The Q24 fixed-point implementation began

to differ from the double-precision reference at the noise

suppression and electrode pulse generation stages.

Mean absolute errors for sample audio files were

calculated by averaging the absolute error of each pulse as per

the following equation:

N

n

P

p

C

c

cpncpn
QY

NPC
MAE

1 1 1

,,,,

1
 (1)

where Y denotes the signal under analysis and Q the

double-precision reference signal, N the total number of

sample frames in a file, P the number of pulses per frame, and

C the number of channels. This error is shown in Fig. 3 where

the mean absolute error for 64 different audio files is

displayed in log scale. During the final low-pass filtering

stage and channel selection, the error in the fixed-point

implementation caused different maximum amplitude

channels to be selected due to differing pulse amplitudes.

Overall the errors in the fixed-point implementation were

brief, lasting 10 to 20 frames in duration. In the smartphone

implementation, the channel selection error was not present,

and the negligible mean absolute errors were caused by

rounding errors in the final data type conversion.

The widely used PESQ (Perceptual Evaluation of Speech

Quality) speech quality measure [16, 17] was used to analyze

the performance of the adaptive noise suppression in the

pipeline. Fig.4 provides the PESQ comparison results

between the adaptive noise suppression and no noise

suppression cases on the smartphone platform. A dataset for

this test was created based on the IEEE speech corpus

consisting of 720 sentences [18]. The speech files were

artificially corrupted with machinery, street, and babble noise

with a SNR of 0 dB. The three sets of noise corrupted files

were then subjected to the noise suppression running on the

smartphone to get the enhanced speech files. As can be seen

from Fig. 4, for all the noise environments, the adaptive noise

suppression generated a higher PESQ score than the no

suppression case.

Timing results for the three platforms of smartphone,

PDA, and PC are shown in Table I. The PC target had a 3.33

GHz processor with 4 GB RAM and the PDA target had a 520

MHz processor with 64 MB RAM. On the smartphone

platform, the processing time took 3.98 ms with NEON and

5.45 ms without NEON for one 256 sample frame of audio

data at 22 kHz sampling frequency (11.6 ms of audio). The

use of the NEON coprocessor led to a 27 percent decrease in

888

TABLE I. SPEECH PROCESSING PIPELINETIMING PROFILE (256-SAMPLE FRAMES AT 22 KHZ OR 11.6 MSEC FRAMES)

Processing

Time in ms on
Entire Pipeline Recursive WPT

Voice Activity

Detector

Feature Extraction,

Noise Classifier

Noise

Suppression

Envelope

Computation

Smartphone

w/ NEON
3.98 1.10 0.22 0.21 1.77 0.68

Smartphone

w/o NEON
5.45 1.13 0.46 0.73 2.07 1.06

PDA 8.41 1.24 0.91 2.03 2.40 1.83

PC 0.70 0.12 0.03 0.14 0.36 0.05

the overall computation time. Timing differences between the

three target platforms are attributed mainly to clock speed

differences, and to a lesser extent, to their memories. The

recursive wavelet packet transform and the noise suppression

did not gain much increase in computational efficiency from

the floating-point implementation. The largest processing

gains were seen in the VAD, MFCC feature extraction, noise

classifier, and envelope computation. The increase in the

computational efficiency of these modules was found to be

due to the loops within these functions being replaced with

the NEON SIMD code.

V. CONCLUSION

In this paper it was demonstrated that the previously

developed cochlear implant speech processing pipeline could

be implemented on a smartphone platform and be operated in

real-time. Modification to the pipeline was done to allow

higher precision floating-point data representation and

architecture specific optimizations. Benefits gained from this

new implementation are faster processing time, and greater

computation precision. Further work is needed to properly

feed the generated pulses by the smartphone platform into

implanted electrodes. In essence, the real-time

smartphone-based implementation presented in this paper

makes smartphones a viable alternative to the FDA-approved

PDA platform for cochlear implant studies.

ACKNOWLEDGMENT

This work was in part supported by a grant from the National

Science Foundation (RAPD Award: CBET-0932542).

REFERENCES

[1] National Institute on Deafness and Other Communication Disorders,

“Cochlear Implants,” National Institutes of Health publication number

11-4798, http://www.nidcd.nih.gov/health/hearing/pages/coch.aspx,
2011.

[2] B. Fetterman and E. Domico, “Speech recognition in background noise

of cochlear implant patients,” Otolaryngol. Head Neck Surg., vol. 126,
no. 3, pp. 257-263, 2002.

[3] V. Gopalakrishna, N. Kehtarnavaz, T. Mirzahasanloo, and P. Loizou,
“Real-time automatic tuning of noise suppression algorithms for

cochlear implant applications,” IEEE Transactions on Biomedical

Engineering, vol. 59, pp. 1691-1700, 2012.

[4] Gartner. Inc., “Gartner Says Smartphone Sales Grew 46.5 Percent in

Second Quarter of 2013 and Exceeded Feature Phone Sales for First

Time,” [online] Aug 2013,

http://www.gartner.com/newsroom/id/2573415 (Accessed : 3 May

2014).

[5] T. Mirzahasanloo, V. Gopalakrishna, N. Kehtarnavaz, and P. Loizou,

“Adding real-time noise suppression capability to the cochlear implant
PDA research platform,” Proceedings of 34th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), San Diego, CA, Aug 2012.

[6] T. Mirzahasanloo, N. Kehtarnavaz, and I. Panahi, “Adding quiet and

music detection capabilities to FDA-approved cochlear implant
research platform,” Proceedings of 8th International Symposium on

Image and Signal Processing and Analysis, Trieste, Italy, Sept. 2013.

[7] V. Gopalakrishna, S.Yousefi,N.Kehtarnavaz, and P. Loizou, “Markov
random field-based features for background noise characterization in
hearing devices,” presented at the 14th Appl. Stochastic Models Data
Anal. Conf., Rome, Italy, 2011.

[8] Y. Hu and P. Loizou, “Environment specific noise suppression for
improved speech intelligibility by cochlear implant users,”

, vol. 127, no. 6, pp. 3689–3695, 2010.

[9] G. Kim and P. Loizou, “Improving speech intelligibility in noise using
environment-optimized algorithms,”

, vol. 18, no. 8, pp. 2080–2090, Nov. 2010.

[10] V. Gopalakrishna, N. Kehtarnavaz, P. Loizou, and I. Panahi,

“Real-time automatic switching between noise suppression algorithms
for deployment in cochlear implants,”

Proceedings of 32nd Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), Buenos Aires,
Argentina, Sept. 2010.

[11] V. Gopalakrishna, N. Kehtarnava, and P. Loizou, “A recursive wavelet

based strategy for real-time cochlear implant speech processing on
PDA platforms,” IEEE Trans. on Biomedical Engineering, vol. 57, pp.

2053-2063, August 2010.

[12] V. Gopalakrishna, N. Kehtarnavaz, and P. Loizou, “Real-time
implementation of wavelet-based advanced combination encoder on
PDA platforms for cochlear implant studies,” in

, 2010, pp. 1670–1673.

[13] Google. Inc., “Developer Tools,” [online],

https://developer.android.com/tools/index.html (Accessed: 3 May

2014).

[14] Google. Inc., “Android NDK,” [online],

https://developer.android.com/tools/sdk/ndk/index.html (Accessed: 3
May 2014).

[15] ARM, Inc., Cortex™-A9 NEON™ Media Processing Engine Technical

Reference Manual, 2012.

[16] International Telecommunication Union, “Perceptual evaluation of

speech quality (PESQ), and objective method for end-to-end speech
quality assessment of narrowband telephone networks and speech

codecs,” Technical Report, 2000.

[17] Y. Hu and P. Loizou, “Evaluation of objective quality measures for
speech enhancement,” , vol. 16, no.
1, pp. 229–238, Jan. 2008.

[18] P. Loizou, Speech Enhancement: Theory and Practice. Boca Raton,
FL: CRC Press, 2007.

889

