
 

 

Abstract— Perinatal hypoxia is a major cause of brain injury 
in preterm babies. Thus, neuro-protective treatments play a 
pivotal role during the first 6-8 hours post hypoxic-ischemic 
insult. However, at present it is not possible to determine which 
infants are suffering from hypoxic ischemia. Recent 
investigations suggest that there are high frequency micro-scale 
transients exist in the first 6-8 hours of a hypoxic ischemic EEG 
which could be utilized as the useful benchmarks for the 
prediction of hypoxia. Type-2 Fuzzy Logic Systems (Type-2 
FLS) have the capability to handle inherent uncertainties in 
nonlinear signals. This paper describes the application of a 
Type-2 FLS to detect spikes in the preterm fetal sheep 
electroencephalogram (EEG) after asphyxia in utero. The 
Type-2 FLS differentiates each detected event in terms of its 
spikiness and specifies the potential events based on their 
degree of similarity to an EEG expert definition of a standard 
spike. An adaptive thresholding method has been employed in 
order to increase the spike detection ability of the purposed 
system. The sensitivity and selectivity verify enhanced 
performance of the Type-2 FLS for spike detection in fetal 
sheep EEG signals with a 98.1% and 93.7% respectively which 
are significantly improved in comparison to our previous 
methods. 
 

I. INTRODUCTION 

    Hypoxia before or during child birth plays a major role in 
the evolution of brain injury in preterm infants [1]. The 
electroencephalogram (EEG) is one of the main diagnostic 
tools used for the identification of neurophysiological 
disease and brain disorders [2]. In the EEG, when a hypoxic 
insult occurs, there is a 6-8 hours post insult period, called 
latent phase, before high amplitude epileptiform activity 
starts to appear (Figure 1) [3]. The latent phase can be 
broken down into three distinct subsections called the Early, 
Mid, and Late latent phase. The detection of hypoxic 
precursors within the latent phase would enable clinicians to 
increase the efficiency of further treatment [4]. At the 
moment, there are no exact biomarkers in the EEG defining 
if hypoxia has occurred or not [4]. However, high frequency 
micro-scale transients occur in the hypoxic ischemic EEG 
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signal during the latent phase after hypoxia.  Most of the 
transients are categorized among the epileptiform seizures; 
the different forms of which are classified as spikes, sharp 
waves, and slow waves with low amplitudes and high 
frequencies (less than 400 ms). Such transients may occur 
separately, in multiples, or as complexes [3, 4] and could be 
considered potential biomarkers of the injury. Hence, 
recognition of such embedded transients in the latent phase 
may prove beneficial in the identification of hypoxia [4-9]. 
Signal processing methods have shown the capability for 
EEG feature extraction [4, 8, 10]. A variety of signal 
processing techniques such as autocorrelation, time-
frequency, and the wavelet transform have been used for 
EEG investigation [4, 6, 10, 11]. This paper is concerned 
with detecting the spike transients effectively in the EEG 
signal using fuzzy methods. The idea of fuzzy logic and 
fuzzy set theory, first described by Lotfi-Zadeh [12], has 
been employed for biomedical signal analysis. Specifically, 
the mathematical framework of the type 2 fuzzy conceptual 
reasoning allows one to handle a large portion of inherent 
uncertainties of a system, spontaneously [13]. In a fuzzy 
system, knowledge of a human expert in the field is 
described in linguistic terms in the rulebase of the fuzzy 
system [9, 12]. Thus, a system`s behaviour can be modelled 
using logic rules. Type-1 and Type-2 FLSs have been used 
in a variety of applications such as signal processing, pattern 
recognition, data analysis and classification, automatic 
control, epileptic seizure detection, and spike sorting [14-
22]. The Type-2 FLS is mostly utilized in order to find a 
solution for nonlinear problems [23]. 
The spikes, sharps, and complexes have very similar shape 
profiles to each other (namely, similar degrees of fuzziness) 
[24]. A Type-2 FLS approach allows us to differentiate 
between such similarity degrees of fuzziness. In this paper, 
logical rules are firstly derived to classify what we consider 
as an ideal spike in the EEG of a preterm fetal sheep. 
Secondly, the Type-2 FLS assesses each shape profile in 
terms of its spikiness and determines whether it falls into the 
spikes group or not. Finally, we demonstrate the total 
performance of the Type-2 FLS is significantly more reliable 
than our previous methods. 
 

II. METHODS 

A. Data acquisition 

    The EEG data sets in this study were recorded and 
approved by the Animal Ethics Committee of The University 
of Auckland [4]. Normally, a human`s brain matures 
between 27-30 weeks of gestation. This is the time which is 
coincided with a sheep gestation of 103 days. At that time, a  
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Figure 1.  The Latent phase of injury after hypoxic insult 

fetal asphyxia is applied by obstruction of umbilical cord for 
25 minutes. Measurements of the blood composition and the 
completion of umbilical cord occlusion are reported in [4]. 
Under the afore-mentioned conditions, 8 hours post-
asphyxia of the fetal EEG has been recorded and digitized at 
a sampling frequency of 64Hz, described in [4]. The 
algorithm performance was assessed over data sets with 
lengths of 38400 points (10 minutes). Normalization and de-
meaning processes were performed on the recorded signal. 
An adaptive thresholding method was employed to make the 
algorithm EEG/Phase independent. Then, the signal features 
of the spikes were used in an interval Type-2 FLS 
membership function for final reasoning (Figure 3). In this 
study, spike activity detection was carried out on three 10 
min durations within the latent phase after; 0.5 hour (h), 3.0 
h and 6.2 h. Basically, the latent phase consists of 1) the 
Early-latent phase, 2) the Mid-latent phase, and 3) the Late-
latent recovery phase (Figure 1). Severe EEG amplitude 
damping and cerebral hypoperfusion occur in the first phase. 
The maximum number of transient activities were observed 
in the mid-latent phase and also advanced metabolic 
deterioration commences in this interval. In addition, the 
total number of transients reduced in the last phase. The late-
latent phase occurs exactly before the high amplitude 
epileptiform seizures start appearing.  
 

  
Figure 2.  Footprint of Uncertainty in Type-2 FIS Membership Function 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  EEG processing by means of Type-2 Fuzzy Logic System 

 

Initially, all the transients of the latent phase from the left 
EEG channel recordings were identified manually by an 
expert and also categorized into groups of the high 
frequency low amplitude transients; spikes (<70 ms), sharps 
(70–250 ms), slow waves (250-400 ms), and complexes 
(sharp waves followed by several spikes associated with 
slow waves) [24]. 
 
B. Fuzzy Inference System 
    Human reasoning about external environments is mostly 
approximate (analogue) rather than exact (digital). For 
example we say “it`s cloudy without specifying the 
percentage of cloudiness”. The idea of a Fuzzy logic 
Inference System (FIS) is to design a flexible architecture 
which models this behaviour. As a powerful decision 
making system, FIS, embeds the knowledge of an expert in 
the field into Membership Functions (MFs). The rulebase of 
such a system consists of logical fuzzy rule sets which 
approximates human reasoning. Typically, a FIS is 
structured on a set of primary IF-THEN logical rules. In 
such a system, each rule maps multiple inputs from input 
MFs to one or more outputs on output MFs. In the Type-2 
FLS, the union of all possible primary MFs consist of a 
bounded region that is called Footprint of Uncertainty (FOU) 
(Figure 2). This region increases the ability of the FLS to 
detect signals whose generic form varies within same range. 
A simple structure of a Type-2 fuzzy Multi Input Single 
Output (MISO) rule could be represented as: 
	
ଵܣ	݂ܫ

  ଵݔ  ଵܣ
	ܽ݊݀ ܣ	݀݊ܽ…  ݔ   		ܣ

 
ଵܤ			݄݊݁ܶ																																																								

  ଵݖ  ଵܤ
														  (1) 

 
Here, ݔ, ܣ ଵ are the membership values andݖ

, ܣ
, ,ଵܤ ଵܤ 	 are 

the upper and lower Type-2 input/output MFs [13]. In 
particular, slopes before and after the summit and amplitudes 
before and after the summit were employed as the Type-2 
FLS inputs in a potential spike point. A triangular region of 
likelihood was defined in our method to locate an ideal spike 
as the Type-2 MFs (Figure 2). In particular, we characterize 
an ideal spike if it has an amplitude of greater than 20 μV 
and a duration of less than 70 ms (Frequency greater than 
14.3 Hz). Membership functions of the Type-2 FLS were  
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Figure 4.  A section of raw EEG singnal in the Early-latent phase (A) and 
the corresponding Type-2 FLS correct detections (B) 

 

configured considering the above description for an ideal 
spike. We also define a skew criterion (left, right, and 
center) of spikes. A sample of the detection boundaries for 
the detected spikes in the Early-latent phase is depicted in 
Figure 6a-c. The Type-2 FLS was employed to defuzzify the 
similarity of a detected sharp to an ideal spike in the EEG 
signal with epileptic seizures in the background (Figure 3). 
A sample segment of the early-latent phase and the correct 
detections are depicted in Figure 4. The suggested network 
demonstrated a good ability in the detection of multiple 
spikes which were close together in different situations in 
time (Figure 5), effectively increasing the algorithm 
performance. 

 

III. RESULTS 

     The performance of the discussed algorithm has been 
assessed using the sensitivity (2) and the selectivity (3) [4]. 
Also the overall performance of the algorithm, the average 
of sensitivity and selectivity, is evaluated (4); 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 5.  Detected spikes which are very close together in time 

TABLE I 
ALGORITHM PERFORMANCE – Early‐latent phase 

  
Sensitivity 

(%) 
Selectivity 

(%) 
Overall Performance 

(%) 

Haar Wavelet [4]  80.3  79.2  79.8 

STFT [6]  82.1  78.4  80.3 

Type‐2 FLS detector  98.1  93.7  96.0 

 
TABLE II 

ALGORITHM PERFORMANCE – Mid‐latent phase 

  
Sensitivity 

(%) 
Selectivity 

(%) 
Overall Performance 

(%) 

Haar Wavelet [4]  81.8  82.8  82.3 

STFT [6]  89.8  88.8  89.3 

Type‐2 FLS detector  95.5  95.5  95.5 

 
TABLE III 

ALGORITHM PERFORMANCE – Late‐latent phase 

  
Sensitivity 

(%) 
Selectivity 

(%) 
Overall Performance 

(%) 

Haar Wavelet [4]  66.3  77  71.7 

STFT [6]  78.4  71.6  75 

Type‐2 FLS detector  73.6  81.7  77.7 
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2
																				ሺ4ሻ 

 
A spike detection is called true positive (TP) when the spike 
is detected by both the algorithm and an expert; a false 
positive (FP) is when a spike is detected by algorithm and 
not by an expert and a false negative (FN) is when not 
detected by the algorithm and identified by an expert. In 
addition, the Type-2 FLS was compared against our previous 
methods for spike detection is the same specimen of Haar 
wavelet [4] and STFT [6].  
The authors identified manually 213, 88, and 73 spikes in 
three distinct 10 min segments of the early, mid and late 
latent phases, respectively. The algorithm performance was 
calculated according to the equations (2), (3), and (4). Tables 
(I-III) illustrate the superiority of the Type-2 FLS detector 
for spike detection purposes over our previous methods. The  
Type-2 FLS demonstrated excellent ability in the correct 
detection of 209 spikes among the total number of 213 
spikes in the Early-latent phase. As a result, the proposed 
Type-2 FLS model has detected the spikes with the overall 
performance of 96.0%, 95.5% and 77.7% in the Early, Mid, 
and Late latent phases, respectively. The maximum and 
minimum boundaries of all the detected spikes from three 
different groups over the selected segment of the Early-latent  
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Figure 6.  Three different  MFs of the detected spikes in Early-latent phase. 
The solid lines indicate the maximum and minimum extrema of the MFs 

and the dashed lines indicate a sample spike detection. 

phase and a sample spike in each category are depicted in 
figure 6a-c. These figures depict the adapted FOUs of all the 
true positive spike detections. In other words, a huge 
proportion of different spike profile shapes in a 64Hz 
sampled EEG can be detected using the defined MF areas of 
the suggested interval Type-2 FLS classifier. 
 

IV. CONCLUSION 

    In this paper, a new method based on the Type-2 FLS has 
been represented for the spike identification in a preterm 
fetal sheep EEG signal during the latent phase of the injury 
after hypoxic-ischemia. Dealing with the uncertainty issues 
of the detection, the discussed method has shown 
considerable capability in the recognition of spikes from the 
other similar transients. The best performances (sensitivity 
and selectivity) were achieved for the benchmark sheep with 
higher number of transients in the 3 specific 10 minutes of 
early-, mid-, and late-latent phase, respectively; Namely, 
with overall performance of 96.0%, 95.5% and 77.7% were 
obtained for the sensitivity and selectivity factors in the 
Early-, Mid-, and Late-latent phase, respectively. In the late-
latent phase, detection of the sharp waves with those who 
were appeared around 70 ms have effectively incremented 
the number of false positive detections and caused a 
marginal reduction in the algorithm performance. The Type-
2 FLS algorithm has demonstrated enhanced performance in 
the detection of single spikes in the fetal sheep EEG signals 
as well as multiple spikes which are located very close to 
each other in time. However, in some rare cases the 
algorithm misinterpreted a detection of rare sensitive spikes.  
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