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Abstract— The purpose of this project was to design an
algorithm for detection of tonic seizures based on surface elec-
tromyography signals from the deltoids. A successful algorithm
has a future prospect of being implemented in a wearable
device as part of an alarm system. This has already been done
for generalized tonic-clonic seizures, and the hypothesis was
that some of the same characteristics could be found for tonic
seizures. The signals were pre-processed by a high-pass filter to
remove low frequency noise such as movement artifacts. Several
different features were investigated, including kurtosis, median
frequency, zero crossing rate and approximate entropy. These
features were used as input in the random forest classifier to
decide if a data segment was from a seizure or not. The goal was
to develop a generic algorithm for all tonic seizures, but better
results were achieved when certain parameters were adapted
specifically for each patient. With patient specific parameters
the algorithm obtained a sensitivity of 100% for four of six
patients with false detection rates between 0.08 and 7.90 per
hour.

I. INTRODUCTION

About 1% of the population is affected by epilepsy,
which is a chronic, neurologic disease defined by recurrent,
spontaneous epileptic seizures [1]. An epileptic seizure is
an unprovoked and uncontrollable, abnormally excessive or
synchronous activation of neurons in the brain [1]. About a
third of these patients cannot control their seizures by use
of antiepileptic drug therapy [2], and untreated epilepsy can
have severe consequences both physically and mentally.

An automatic seizure alarm system can increase the quality
of life for such patients. The system will send an alarm to
inform relatives or caretakers, when a seizure is occurring
such that proper action can be taken. This will increase the
safety and independence of the patient and reassure relatives
that the patient is secure. Furthermore, such a system can
assist in keeping track of the exact number of seizures
a patient is experiencing, which is important for diagno-
sis and treatment. Electroencephalography (EEG) combined
with video surveillance is the gold standard for analysis of
epileptic seizures, but continuous measurements of EEG and
video are not suitable for an alarm system for everyday use.
Many types of seizures have motor manifestations, which
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has led to the analysis of muscle activity and movements for
seizure detection.

An alarm system based on surface electromyography
(sEMG) is already on the market [3]. The system is capable
of detecting seizures of a specific type: the generalized
tonic-clonic seizures (GTCS). A big proportion of patients
with untreatable seizures has this type, but other types are
still undetectable including the ones called tonic seizures.
Several other groups have also developed seizure detection
algorithms (e.g. [4], [5]), but none of them work specifically
with sEMG from tonic seizures.

II. METHODOLOGY

A. Patients

Six patients from Danish Epilepsy Centre in Dianalund,
Denmark with tonic seizures were included. The age, gender,
number of tonic seizures, and recording length for each
patient are listed in Table I.

B. Recordings

The signals were recorded prior to this study and include
both EEG, electrocardiography (ECG), and sEMG at several
different locations. However, only sEMG signals from the
deltoids were used in this project, as these gave the highest
detection rates for GTCS in a previous study by Conradsen
et. al [6]. Recordings from both deltoids were included
as two separate measurements to increase the amount of
data. The sEMG was filtered with an anti-aliasing filter of
512 Hz and sampled at 1024 Hz. Seizure onset and offset
times were determined by a trained neurologist and clinical
neurophysiologist with experience in the evaluation of long-
term video-EEG recordings. Some of the recordings also
included other types of seizures, seizures with no activity
in the deltoids, or periods where it is not certain whether
it is a seizure or not. Data from all these periods were
excluded from both training and testing of the algorithm.
The onset and offset times determined from EEG and video

TABLE I: Age, gender, number of tonic seizures, and record-
ing length for different patients. Besides these seizures, some
patients may also have other types of seizures.

Patient Age Gender Total file length [h] # of tonic seizures
1 58 Male 9.0 3
2 6 Female 0.1 1
3 14 Male 27.5 5
4 30 Male 12.1 10
5 48 Male 4.0 1
6 9 Female 12.1 6
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(a) Patient 4: Seizure
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(b) Patient 6: Seizure
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(c) Patient 4: Normal

0 10 20 30 40
−4

−2

0

2

4

Time [s]

A
m

p
lit

u
d
e

 [
m

V
]

(d) Patient 6: Normal

Fig. 1: Tonic seizures and normal activity from two patients.
The black lines indicate seizure onset and offset marked by
trained neurologist and clinical neurophysiologist. Note how
the muscle activity for patient 6 does not completely align
with the offset mark.

may deviate from the onset and offset of muscle activity. The
author has therefore manually excluded uncertain periods in
the beginning and end of seizures from training.

The amplitude of sEMG recordings can be quite different
between patients. Furthermore, the amplitude during seizures
compared to normal movements can also vary between
patients. Some patients had greater activity during seizures,
while other patients had more subtle seizures with lower
activity than during normal movements. Seizures and normal
movements from two patients are shown in Fig. 1, which
illustrates the great difference in amplitude in the current
data.

C. Feature extraction

The signals were pre-processed with a fourth order high-
pass Butterworth filter with a cutoff frequency of 30 Hz.
This removes low-frequency artifacts from movements and
attenuates most of the ECG artifacts as described in [7].
Powerline interference was removed with a comb filter with
notches at 50 Hz and higher harmonics. Features were
extracted from windows of 1 s with 50% overlap.

Eleven features in total were included in the study. The
following features were extracted from the entire frequency
band (after pre-processing): approximate entropy, median
frequency, AR coefficients, and reflection coefficients (with
a model order of 3). The kurtosis was computed for the
fourth level of detail coefficients after a discrete wavelet
transform1. Furthermore was the zero crossing rate (ZCR)
computed after a 150 Hz high-pass filtration as it is done
in the detection algorithm for GTCS [6]. Several of these
features characterize the frequency content of the signal.
They were chosen as it was observed in a study by Conradsen
et. al [8] that tonic seizures contained relatively more power
in the higher frequencies compared to simulated seizures.

120th Daubechies as mother wavelet

The AR coefficients and reflection coefficients are com-
puted for a model order of 3. A low model order captures
the general trend of the signal and keeps the total number of
features down. The computation of approximate entropy re-
quires a choice of a parameter r. A feature that uses the same
r for all windows and a feature where r is chosen separately
for each window were investigated. In the computation of
ZCR, a hysteresis was used to avoid counting zero crossings
from small random fluctuations. The hysteresis level was
determined in the beginning of each recording from a 5
second window that was assumed only to contain noise by
setting it to three times the standard deviation of the noise.

There will always be some degree of amplitude increase
during a seizure compared to the background. This inspired
to a simple binary activity feature that only states if there is
activity or not. Then only windows with activity will enter
the classification algorithm, while all other windows will be
considered not to be seizures. The feature was based on the
RMS of the current window relative to the minimum RMS
in the previous 20 s. The activity feature is 1 if the relative
RMS exceeds a threshold of 2 and 0 otherwise.

D. Classification

The features computed for each data window are classified
into seizure or nonseizure by use of the machine learning
algorithm random forest (RF).

The basis of RF is decision trees trained with the CART
algorithm. Decision trees are rather simple models that split
the feature space into cuboid regions belonging to different
classes [10]. A new input feature vector x is classified by
passing it sequentially through a binary tree structure, where
each node corresponds to a threshold on one of the features.
The input starts at the root node in the top and end at one
of the leaf nodes in the bottom that corresponds to a certain
region in feature space. This region in turn corresponds to
a specific class y. In this classification problem, there are
only two classes: positive (y = 1) and negative (y = −1),
corresponding to seizure and nonseizure respectively.

An RF model is constructed by growing a large number
(B) of decision trees, where each tree is trained from a
subset of the training data. These different trees are denoted
h(x;θb), b = 1, . . . ,B, where x is an input example and θb is
the subset. The subset is sampled randomly from the training
data with replacement, i.e. a bootstrap sample. It has the
same size as the original training set and is different for
each tree in the forest. A new input is classified by passing
it through all trees and the classification is based on the
majority vote. That is, the classification is determined by

h̄(x) =
1
B

B

∑
b=1

h(x;θb) ,

ŷ =
{

1 if h̄(x)> 0.5
−1 if h̄(x)≤ 0.5 . (1)

It can be shown that the expected error of an ensemble of
models will always be at least as small as for a single model
[10].
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The performance of RF is dependent on the strength of
the individual tree and the correlation between them [9]. To
reduce the correlation, the algorithm for growing a tree in RF
is modified. At each node the best split is determined only
between a random subset (of size F) of features. The size
of the subset is recommended to be the square root of the
total number of features. Here, F was chosen to be 3. The
number of trees B was chosen to be 500. A third parameter
that can be varied, is the cutoff threshold for the number of
votes it takes to be classified as positive or negative. The
majority decides as default, as in (1), but the cutoff for the
positive class can be lowered to increase sensitivity or raised
to decrease the false detection rate (FDR). For instance, if
the cutoff is set to 0.3, a test example is classified as seizure
if at least 30% of the trees give a positive vote.

The dataset contained a substantially larger amount of
nonseizure data compared to seizure data. To avoid favouring
the negative class, the bootstrap samples were balanced to
contain an equal amount of examples from each class.

E. Post-processing

The classification algorithm from the previous section does
not consider the sequential nature of the data. Each window
will be classified as positive or negative regardless of the
preceding or following windows. The sequential information
was taken into account by only detecting a seizure if a
predefined number of successive windows were classified as
positive. The number of positive, successive windows needed
to detect a seizure was varied between 6 and 26 to find
different trade-offs between sensitivity and false detection
rate. The number of positive windows needed will be denoted
the time threshold.

In an alarm application, action will be made to help
the patient, and he will already be taken care of if a new
seizure happens within short time of the first. Therefore
some refractory period after each alarm can be allowed,
where no new seizures will be detected regardless of the
classifier output. This can greatly reduce the number of false
alarms, but if the period is too long and the FDR is already
high, there is a risk of not detecting real seizures. Here,
the refractory period was chosen to be 30 seconds. If the
algorithm is used for monitoring, the refractory should be
much shorter, since seizures shortly after each other need to
be detected as separate seizures.

The algorithm was implemented in MATLAB Release
2013b (The MathWorks, Inc., Natick, Massachusetts, United
States).

III. RESULTS

The algorithm was evaluated in a leave-one-out cross-
validation. The cutoff and time threshold can both be opti-
mized to find a proper trade-off between high sensitivity and
low FDR. Therefore, a grid search was performed, where
the time threshold was varied between 6 and 26 windows
with an interval of 2, and the cutoff was varied between 0.1
and 0.5 with an interval of 0.1. The FDR and sensitivity
was plotted against each other to visually determine the best
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Fig. 2: Grid search for patient 3 alone and for all patients
combined. Each line represents a fixed cutoff where the time
threshold is varied.

TABLE II: Patient specific parameters and the resulting
performance on the test set.

Test patient Cutoff Time threshold SEN FDR [h−1]
1 0.3 18 1.00 0.64
2 0.5 22 1.00 0.00
3 0.2 20 0.50 4.12
4 0.1 6 0.75 6.62
5 0.2 6 1.00 7.90
6 0.4 26 1.00 0.08

set of parameters. An example of the FDR plotted against
SEN for patient 3 is shown in Fig. 2a, and Table II lists the
chosen parameters for each patient. For a generic algorithm,
the parameters need to be the same for all patients. Fig. 2b
shows the grid search for all patients combined. The choice
of generic parameters could either be a cutoff of 0.2 and a
time threshold of 18 resulting in SEN = 0.53 and FDR =
1.49, or a cutoff of 0.1 and a time threshold of 20 resulting
in SEN = 0.63 and FDR = 4.03, depending on which trade-
off is considered best. The results for the individual patients
with cutoff and time threshold set to 0.2 and 18 are shown
in Table III.

A few false alarms were selected to investigate the dif-
ference in frequency content between seizure and normal
movement. Fig. 3 shows normalized magnitude spectra for
a seizure and a false alarm. Visually, it is difficult to see the
difference. The same is the case for other false alarms from
other patients.

IV. DISCUSSION

The results are not near the performance requirements
for a usable alarm system. For comparison, the algorithm
in the current alarm for GTCS obtained SEN = 1.00 and
FDR = 0.04/h [6]. The best performance in this study is
SEN = 0.53 and FDR = 1.49 or SEN = 0.63 and FDR

TABLE III: Results with generic parameters that are the same
for all six patients. The cutoff is set to 0.2 and the time
threshold is 18.

Test patient SEN FDR [h−1]
1 1.00 1.92
2 1.00 0.00
3 0.70 5.24
4 0.10 1.04
5 0.00 1.53
6 1.00 1.42
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(a) Seizure (b) False alarm

Fig. 3: Normalized magnitude spectra for a seizure and
a false alarm. The spectrum is computed for a 5 second
window and normalized to sum to 1.

= 4.03, depending on the choice of parameters. There is,
however, a great variability between patients, and for three
of the patients the sensitivity is satisfactory. Using patient
specific parameters this increases to four patients. The high
FDR values pose a greater problem. The maximum tolerable
number of false alarms is about 1 per day, but this number
exceeds 24 for all patients except patient 2. The FDR for
patient 2 is not reliable due to the very small amount of
data (see Table I). It should be noted that the cutoff and
time threshold is optimized on the test set. Optimally, they
should have been applied to a third unseen dataset, but the
amount of data did not allow this.

A hypothesis could be that normal movements will be sim-
ilar to simulated seizures, and that a difference in frequency
content could be observed. The difference between the false
alarm and the seizure shown in Fig. 3 is, however, very small,
unlike the example with a tonic seizure and a simulated
seizure in [8]. An explanation could be that the simulated
seizures consist of maximal voluntary contractions (MVC).
During MVC there will be a synchronization between motor
neurons, which results in higher amplitude and more power
in the lower frequencies. The false alarms are normal move-
ments and are most often submaximal contractions. There-
fore, this synchronization may not occur, and consequently
will the false alarms be more similar to seizures with lower
power in the lower frequency components.

More work can be put into the feature extraction. AR
and reflection coefficients are used as separate features even
though they are related in some way. The relationship could
be investigated further, either to find a way to exploit it or to
reveal redundancies. Furthermore, could the order model be
optimized. The hysteresis used for ZCR is determined in the
beginning of the recording, but if the noise level changes,
it would desirable if the hysteresis could adapt. Generally,
the feature set should be reduced if the algorithm should
work on a low-power wearable device. RMS and waveform
length computed for different wavelet bands as well as
the second spectral moment were also included as features
initially, but they were not suitable for distinction between
seizures and normal movements, because of the amplitude
differences seen in Fig. 1. Kurtosis for other wavelet bands
than the fourth was also included, but they were also quickly
discarded due to a too small discriminative power.

The use of patient specific parameters requires optimiza-

tion for all new patients if the algorithm is to be used in the
field. This is a constraint compared to the use of generic
parameters, as sEMG has to be recorded during several
seizures, before the alarm can be taken into use. Of course
only a subset of patients with epilepsy experiences tonic
seizures. However, in combination with the already devel-
oped algorithm for GTCS, a successful detection algorithm
for tonic seizures can help a lot of seriously disordered
patients. Possibly, solutions to other seizure types can be
developed as well.

V. CONCLUSION

An algorithm was developed for detection of tonic epilep-
tic seizures based on sEMG. The results showed that the
sensitivity for some of the patients was satisfactory, but
too low for other patients. The results were better using
parameters optimized for each patient separately. The number
of false alarms was too high for practical use in both cases.
It was shown that the frequency content of some false
alarms showed to be visually similar to seizures based on
power spectra. Thus features based alone on the frequency
spectra may not be as easy to use to discriminate seizures
from normal activity as first expected based on the study
comparing tonic seizures to simulated tonic activity. This
study showed that the tonic seizures may be very different
from each other both in the time and frequency domain. A
solution could be to calibrate parameters for each patient.
When more data is collected it could be an idea to investigate,
whether the group tonic seizures should actually be split in
several subgroups to clarify and describe their characteristics
better.
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