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Abstract— Human emotion recognition (HER) allows the
assessment of an affective state of a subject. Until recently, such
emotional states were described in terms of discrete emotions,
like happiness or contempt. In order to cover a high range
of emotions, researchers in the field have introduced different
dimensional spaces for emotion description that allow the
characterization of affective states in terms of several variables
or dimensions that measure distinct aspects of the emotion.
One of the most common of such dimensional spaces is the
bidimensional Arousal/Valence space. To the best of our knowl-
edge, all HER systems so far have modelled independently, the
dimensions in these dimensional spaces. In this paper, we study
the effect of modelling the output dimensions simultaneously
and show experimentally the advantages in modeling them in
this way. We consider a multimodal approach by including
features from the Electroencephalogram and a few physiological
signals. For modelling the multiple outputs, we employ a multi-
ple output regressor based on support vector machines. We also
include an stage of feature selection that is developed within an
embedded approach known as Recursive Feature Elimination
(RFE), proposed initially for SVM. The results show that several
features can be eliminated using the multiple output support
vector regressor with RFE without affecting the performance
of the regressor. From the analysis of the features selected in
smaller subsets via RFE, it can be observed that the signals
that are more informative into the arousal and valence space
discrimination are the EEG, Electrooculogram/Electromiogram
(EOG/EMG) and the Galvanic Skin Response (GSR).

I. INTRODUCTION

Human interaction with the environment is highly influ-
enced for the emotional state [10]. The study of the emotions
has become one of the most interdisciplinary investigation
fields in recent years with a wide variety of applications
[12]. Initially, emotions were classified in a discrete space
with a categorization of six basic emotions that are unable
to represent the complexity of all the subtle emotional states
between the basic emotions [3]. An alternative categorization
of emotions can be done in terms of few latent dimensions
that characterize the responses of a human being from
an affective stimulus [8]. Dimensional spaces for emotion
classification allow the representation of a higher range of
emotions than the classic discrete space. Arousal and valence
dimensions conform the most commonly used dimensional
space, where the different emotions are described in terms of
a continuous range of states [8]. For the valence dimension
that is related with the type of emotion, the range goes form
pleasant to unpleasant. In the case of the arousal dimension,
the range of characterization of emotions goes from excited
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to calm and describes the intensity of the emotion [8]. Other
latent dimensions related to the description of emotions are
the dominance and the liking [6].

Automatic emotion recognition has been developed fol-
lowing unimodal and multimodal approaches. The unimodal
works solve the emotion recognition problem from the
information of one signal, being more suitable for discrete
classification spaces [1]. In the case of multimodal approach,
several signals are used to extract information that allows
further emotion recognition in discrete and continuous spaces
of classification [10]. From all the works developed in dimen-
sional spaces of classification, the different dimensions are
analyzed independently following classification or regression
problems from the acquired data [5] [10]. Nevertheless, from
the study of the arousal and valence dimensional space of
classification of emotions, some works have concluded that
this two main dimensions are correlated [8].

Unlike the works that develop the emotion recognition in
a dimensional space by modeling the outputs independently,
this work is focused on the use of the different dimensions as
the multiple outputs of one only learning algorithm. In order
to accomplish this task, an SVM regressor with multiple
outputs is selected. SVM are the state of art learning algor-
tihm with multiple applications in several problems [7]. An
approach for combining the regression of multiple variables
was originally proposed in [11]. This SVM based regression
considering multiple output variables (M-SVR) was first
applied to the frequency nonselective channel estimation [11]
showing benefits in comparison to previous proposals in that
field. Further applications to a biomedical problem were
presented in [9].

On the other hand, feature selection is a well known prob-
lem in machine learning where a feature space dimension
reduction is needed in order to remove redundant data and to
avoid the “Curse of dimensionality” problem [2]. Recursive
Feature Elimination (RFE) is a embedded method for feature
selection based on SVMs proposed by Guyon et. al. in
2002 [4]. An initial study of feature selection applied to the
emotion recognition field was presented in [13] using RFE,
and shows that several features can be discarded without
a significant decreasing of the classification accuracy. In
[7] a stage of feature selection based on RFE is applied
into a regression problem for emotion recognition in the
arousal/valence space, bringing low MSRE and MAE ratings
even for reduced subsets of features.

The aim of this work is to develop a methodology for
M-SVR using the latent dimensions of dimensional spaces
of emotion classification as the outputs with a stage of
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TABLE I
EXTRACTED FEATURES FROM EEG AND PHYSIOLOGICAL SIGNALS [6]

Signal Extracted Features
GSR Average skin resistance, average of derivative,

average rising time of the GSR signal, 10
spectral power in the [0− 2.4]Hz bands, zero
crossing rate of Skin conductance slow response
(SCSR) [0− 0.2] Hz.

Skin
Temperature

Average, average of its derivative, spectral power
in the bands ( [0− 0.1]Hz, [0.1− 0.2]Hz).

Respiration
pattern

Average respiration signal, mean of derivative,
standard deviation, 10 spectral power in the
bands from 0 to 2.4Hz.

Blood
volume
pressure

Average and standard deviation of HR, HRV,
and inter beat intervals, energy ratio be-
tween the frequency bands [0.04− 0.15]Hz and
[0.15− 0.5]Hz, spectral power in the bands (
[0.1− 0.2]Hz, [0.2− 0.3]Hz, [0.3− 0.4]Hz).

EEG theta, slow alpha, alpha, beta, and gamma Spec-
tral power for each electrode. The spectral power
asymmetry between 14 pairs of electrodes in the
four bands of alpha, beta, theta and gamma.

EMG and
EOG

Eye blinking rate, energy of the signal, mean
and variance of each signal.

feature selection using RFE. Several biosignals from a well
recognized database for emotion assessment experiments are
used for the feature extraction and further dataset building.
The main contribution of this work is the development
of a strategy of emotion recognition using regression with
multiple outputs and the extension of the RFE method to the
M-SVR approach.

II. MATERIALS AND METHODS

A. Dataset

The Database for Emotion Analysis using Physiologi-
cal signals (DEAP) [6] is used as the testbed for the
multiple-output regression algorithm with feature selection.
The DEAP database contains several experiments of emotion
elicitation of 32 subjects watching several videos that induce
an emotional state described in terms of some continuous
dimensions as arousal, valence and dominance. The signals
recorded from each experiment are the Electroencephalo-
gram (EEG), Electrooculogram (EOG), Electromyogram
(EMG), Plethysmograph, Galvanic Skin Response (GSR),
Skin Temperature and respiration belt [6].

Several features are extracted form each experiment of
the database. An statistical and spectral power analysis in
some frequency bands from the signals is developed since
it has been reported in some works to bring discriminative
information [6]. Some of the features extracted from each
signal are presented in Table I (a detailed description of all
the extracted features can be found in [6]). For each set of
features the assigned levels of arousal and valence are stored
as the output vector needed for the regression task.

B. Multiple Output Regression

The introduction of the multiple variables regression will
help to use the underlying relationship that the outputs could
present [11]. For an observable output vector y ∈ RQ,
a multidimensional regression estimation problem should

be solved, where a regressor wj and bj (j = 1, · · · , Q)
must be found for every output. The generalization of the
one-dimensional SVR to the multidimensional case leads to
the minimization of equation (1), with ui =

√
e>i ei, with

e>i = y>i − φ>(xi)W − b>, W =
[
w1, . . . ,wQ

]
and

b =
[
b1, . . . , bQ

]>
. The ε−insensitive loss-function then

is extended to multiple dimensions in a L2−based norm,
considering all dimensions in an unique restriction yielding
a single support vector for all dimensions.

LP (W,b) =
1

2

Q∑
j=1

∥∥wj
∥∥2 + C

n∑
i=1

L (ui), (1)

where L(u) = 0 for u > ε, and L(u) = u2− 2uε+ ε2 for
u ≤ ε [11]. ε and C are parameters that need to be tuned.
To obtain W and b a solution for the weighted least square
problem is achieved using the iterative reweighted least
square algorithm (IRWLS). From this optimization problem
and assuming that the work is developed within the feature
space kernel, the best solution of a learning problem can be
expressed as a linear combination of the training samples
in the feature space, i.e., wj =

∑
i φ (xi)β

j = Φ>βj .
The resultant linear system of equations to solve following
the IRWLS procedure over a first-order Taylor expansion of
equation (1) is presented in equation (2)

[
K + D−1a 1

a>K 1>a

] [
βj

bj

]
=

[
yj

a>yj

]
(2)

where j = 1, . . . , Q, (Da)ij = aiδ(i − j), yj =

[y1j , . . . , ynj ]
> and (K)ij = k (xi,xj) is known as the

kernel matrix. The search algorithm can be used to compute
βj . Once the βj have been computed the outputs cannot be
directly calculated because they are function of the nonlinear
transformation φ (·). For each new incoming vector x, the jth
output can be computed as yj = φ> (x)Φ>βj . Defining
a matrix β =

[
β1,β2, . . . ,βQ

]
, the Q outputs can be

computed using y = φ> (x)Φ>β = Kxβ. A detailed
description of the method can be found in [11].

C. Recursive Feature Elimination

Recursive feature elimination (RFE) was proposed to
select subsets of features using SVM’s into DNA microarray
classification of pathologies [4]. The main idea of the RFE
algorithm is to use the weights of the trained SVM to com-
pute a ranking criterion for the relevance of each feature into
the intraclass discrimination. This ranking criterion allows
the elimination of one or several features in each iteration.
As proposed by Guyon et. al. in [4], the ranking vector
DJ = {DJ(i)}Di=1 for the non-linear case is computed from
the α′s of the SVM training and the change in the cost
function following the elimination of one feature following
the kernel computing. This method can be extended to the M-
SVR case as we propose, by using the β′s from each output
to compute the ranking criterion as equation (3) shows [4]
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DJ (i) =
1

2

[
β>QHβQ − β>QH (−i)βQ

]
, (3)

βQ =
1

Q

Q∑
j

βj , (4)

where βQ in equation (4) is the average of the β’s from
each output, H is the matrix with elements yhykK(xh,xk)
and K is a kernel function that measures the similarity
between xh and xk. The notation (−i) means that the
feature i has been removed [4]. Once the ranking vector
DJ is computed, the feature with the minimum ranking
is eliminated from the dataset. The process is repeated
iteratively, training the M-SVR and eliminating the feature
with less ranking until a desired size is reached.

D. Procedure

From the builded dataset, 120 examples are selected for the
M-SVR training. A RBF kernel is the mapping function and
the hypherparameters γ and C of the kernel are searched into
a logarithmic space to obtain the best possible performance
for each training set in terms of the determination of the
multiple outputs. Another subset of 180 examples are used
to test the performance of the M-SVR and a few error metrics
are computed as the mean absolute error (MAE), root mean
squared error (RMSE) and the coefficient of determination
(r2). The selection algorithm RFE takes place to reduce
the feature space until the 95% of the original features is
removed. The error metrics are computed for each selected
subset and the experiment is repeated 10 times with different
training and test sets for statistical validation of the results.

The results obtained from the M-RFE-SVR are compared
against a single RFE-SVR in each dimension to determine
the optimality of the proposed approach and a non-parametric
statistical test is performed to determine the difference be-
tween the two methodologies. From the feature selection
experiments, histograms of occurrence are computed for the
analysis of the features that are selected in the smaller sized
feature subsets. This histograms are constructed computing
the times that a single feature is eliminated in each iteration
or the RFE algorithm, giving a description of the percentage
of apparition of each feature in the reduced subsets. From
this analysis, is possible to determine the signals that bring
major information for emotion assessment.

III. EXPERIMENTAL RESULTS
The results from the M-RFE-SVR and RFE-SVR exper-

iments into the emotion recognition problem are presented
in Figure 1. It can be noticed that several features can be
removed without affecting significantly the RMSE perfor-
mance for both SVR and M-SVR in the two dimensions.
These results are comparable against the state of art for this
scope, obtaninig error metrics as MAE around 0.21 which
are lower than the reported 0.24 in [7]. For the valence
dimension, both of the experiments (M-SVR and SVR) show
a similar behavior for the RMSE in terms of mean and
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Fig. 1. RMSE metric against feature space size from the RFE for M-SVR
and SVR experiments in Arousal/Valence space

standard deviation with levels around 0.25 even for small
datasets, Figure 1(a). In the case of the arousal dimension,
several feature eliminations are developed and the RMSE
maintains a level around 0.24 with higher fluctuations for the
single SVR, Figure 1(b). The analysis of the features selected
in the elimination experiments using RFE is presented in
Figure 2. A similar distribution can be observed on the
features selected for each iteration of RFE in both SVR and
M-SVR experiments.

From the analysis of Figure 2(a), it can be assessed that
features from the EEG and the EOG/EMG are eliminated in
later stages in comparison to the features from other signals.
The selected features in the experiments of single regression,
Figures 2(b) and 2(c) comes from the EEG and EOG/EMG,
an inclusion of the Temperature and respiratory pattern is
also observed. A compilation of the results from all the
experiments is presented in Table II for average and bests
results respectively. From the multiouputs experiments the
metrics are computed for each dimension respectively and the
best results corresponds to the minimum RMSE and MAE
and the highest coefficient of determination R2.

From an statistical analysis of these results, an equal
median test for the RMSE shows that the two modalities
(SVR and M-SVR) are different statistically in some subsets
of features with a higher performance from the M-SVR
method in one subset for valence and in 12 subsets for
arousal. For the r2 the statistical test shows that in some
feature subsets the regression coefficient of determination
has different medians between the SVR and M-SVR, being
superior the M-SVR scheme in 10 subsets for valence and
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Fig. 2. Occurrence histograms of the features in different selected subsets from 10 realizations of RFE

TABLE II
AVERAGE AND BEST ERROR METRICS FOR SVR AND M-SVR

Average error metrics for single and multioutput regression
Experiment RMSE MAE R2

mSVR Valence 0.252± 0.026 0.213± 0.021 0.038± 0.003
mSVR Arousal 0.240± 0.024 0.203± 0.020 0.025± 0.005

Valence 0.261± 0.043 0.216± 0.035 0.002± 0.001
Arousal 0.255± 0.129 0.209± 0.091 0.013± 0.004

Minimum error and maximum r2 for single and multioutput regression
Experiment RMSE MAE R2

mSVR Valence 0.248± 0.026 0.209± 0.021 0.013± 0.003
mSVR Arousal 0.236± 0.024 0.199± 0.020 0.035± 0.005

Valence 0.249± 0.043 0.208± 0.035 0.005± 0.001
Arousal 0.238± 0.129 0.197± 0.091 0.027± 0.004

in 9 subsets for arousal.

IV. CONCLUSIONS AND DISCUSSION

On the evidence of the results presented in section III,
the M-RFE-SVR method proposed combines the feature
selection stage with the new M-SVR approach successfully.
Several feature eliminations take place while the error met-
rics for the outputs maintain similar levels compared to the
regression using the complete set of features. Figures 1(a)
and 1(b) show similar behavior for both dimensions with
arousal presenting fewer errors between the estimated and
test outputs.

Occurrence histograms in Figure 2 shows that the selected
features in smaller subsets belong to similar signals in both
multiple and single outputs. The features from the EEG
have a higher occurrence in final subsets combined with
some features from the EOG/EMG and the GSR signal. The
selected features then are coherent in all the experiments
giving some important information about the most relevant
signals into the HER problem from multimodal information.
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